Nodejs Node.js 8.15.0 LTS Edition

CPE Details

Nodejs Node.js 8.15.0 LTS Edition
8.15.0
2019-02-11 15:39 +00:00
2019-02-11 15:39 +00:00

Alerte pour un CPE

Stay informed of any changes for a specific CPE.
Alert management

CPE Name: cpe:2.3:a:nodejs:node.js:8.15.0:*:*:*:lts:*:*:*

Informations

Vendor

nodejs

Product

node.js

Version

8.15.0

Software Edition

lts

Related CVE

Open and find in CVE List

CVE ID Published Description Score Severity
CVE-2019-9511 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
7.5
HIGH
CVE-2019-9512 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
7.5
HIGH
CVE-2019-9513 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
7.5
HIGH
CVE-2019-9515 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
7.5
HIGH
CVE-2019-9516 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
6.5
MEDIUM
CVE-2019-9517 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
7.5
HIGH
CVE-2019-9518 2019-08-13 18:50 +00:00 Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
7.5
HIGH
CVE-2019-9514 2019-08-12 22:00 +00:00 Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
7.5
HIGH
CVE-2019-5737 2019-03-28 15:20 +00:00 In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1.
7.5
HIGH
CVE-2019-1559 2019-02-25 23:00 +00:00 If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
5.9
MEDIUM
CVE-2018-1000168 2018-05-08 13:00 +00:00 nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling that can result in segmentation fault leading to denial of service. This attack appears to be exploitable via network client. This vulnerability appears to have been fixed in >= 1.31.1.
7.5
HIGH
Click on the button to the left (OFF), to authorize the inscription of cookie improving the functionalities of the site. Click on the button to the left (Accept all), to unauthorize the inscription of cookie improving the functionalities of the site.