CVE ID | Publié | Description | Score | Gravité |
---|---|---|---|---|
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called. | 7 |
Haute |
||
Remote Code Execution can occur in versions of the MLflow platform running version 1.11.0 or newer, enabling a maliciously crafted MLproject to execute arbitrary code on an end user’s system when run. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.0.0rc0 or newer, enabling a maliciously uploaded Tensorflow model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.23.0 or newer, enabling a maliciously uploaded LightGBM scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.24.0 or newer, enabling a maliciously uploaded pmdarima model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.9.0 or newer, enabling a maliciously uploaded PyFunc model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.1.0 or newer, enabling a maliciously uploaded scikit-learn model to run arbitrary code on an end user’s system when interacted with. | 8.8 |
Haute |
||
An attacker is able to arbitrarily create an account in MLflow bypassing any authentication requirment. | 9.8 |
Critique |