CVE ID | Publié | Description | Score | Gravité |
---|---|---|---|---|
In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can modify the plaintext Extra Count field of a confidential GSS krb5 wrap token, causing the unwrapped token to appear truncated to the application. | 7.5 |
Haute |
||
In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can cause invalid memory reads during GSS message token handling by sending message tokens with invalid length fields. | 9.1 |
Critique |
||
lib/kadm5/kadm_rpc_xdr.c in MIT Kerberos 5 (aka krb5) before 1.20.2 and 1.21.x before 1.21.1 frees an uninitialized pointer. A remote authenticated user can trigger a kadmind crash. This occurs because _xdr_kadm5_principal_ent_rec does not validate the relationship between n_key_data and the key_data array count. | 6.5 |
Moyen |
||
PAC parsing in MIT Kerberos 5 (aka krb5) before 1.19.4 and 1.20.x before 1.20.1 has integer overflows that may lead to remote code execution (in KDC, kadmind, or a GSS or Kerberos application server) on 32-bit platforms (which have a resultant heap-based buffer overflow), and cause a denial of service on other platforms. This occurs in krb5_pac_parse in lib/krb5/krb/pac.c. Heimdal before 7.7.1 has "a similar bug." | 8.8 |
Haute |
||
The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.18.5 and 1.19.x before 1.19.3 has a NULL pointer dereference in kdc/do_tgs_req.c via a FAST inner body that lacks a server field. | 6.5 |
Moyen |
||
ec_verify in kdc/kdc_preauth_ec.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.18.4 and 1.19.x before 1.19.2 allows remote attackers to cause a NULL pointer dereference and daemon crash. This occurs because a return value is not properly managed in a certain situation. | 7.5 |
Haute |
||
MIT Kerberos 5 (aka krb5) before 1.17.2 and 1.18.x before 1.18.3 allows unbounded recursion via an ASN.1-encoded Kerberos message because the lib/krb5/asn.1/asn1_encode.c support for BER indefinite lengths lacks a recursion limit. | 7.5 |
Haute |
||
An authentication bypass flaw was found in the way krb5's certauth interface before 1.16.1 handled the validation of client certificates. A remote attacker able to communicate with the KDC could potentially use this flaw to impersonate arbitrary principals under rare and erroneous circumstances. | 6.5 |
Moyen |
||
plugins/preauth/pkinit/pkinit_crypto_openssl.c in MIT Kerberos 5 (aka krb5) through 1.15.2 mishandles Distinguished Name (DN) fields, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow and application crash) in situations involving untrusted X.509 data, related to the get_matching_data and X509_NAME_oneline_ex functions. NOTE: this has security relevance only in use cases outside of the MIT Kerberos distribution, e.g., the use of get_matching_data in KDC certauth plugin code that is specific to Red Hat. | 9.8 |
Critique |
||
In MIT Kerberos 5 (aka krb5) 1.7 and later, an authenticated attacker can cause a KDC assertion failure by sending invalid S4U2Self or S4U2Proxy requests. | 6.5 |
Moyen |
||
The process_db_args function in plugins/kdb/ldap/libkdb_ldap/ldap_principal2.c in the LDAP KDB module in kadmind in MIT Kerberos 5 (aka krb5) through 1.13.4 and 1.14.x through 1.14.1 mishandles the DB argument, which allows remote authenticated users to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted request to modify a principal. | 5.3 |
Moyen |
||
The xdr_nullstring function in lib/kadm5/kadm_rpc_xdr.c in kadmind in MIT Kerberos 5 (aka krb5) before 1.13.4 and 1.14.x before 1.14.1 does not verify whether '\0' characters exist as expected, which allows remote authenticated users to obtain sensitive information or cause a denial of service (out-of-bounds read) via a crafted string. | 5.3 |
Moyen |
||
Multiple memory leaks in kadmin/server/server_stubs.c in kadmind in MIT Kerberos 5 (aka krb5) before 1.13.4 and 1.14.x before 1.14.1 allow remote authenticated users to cause a denial of service (memory consumption) via a request specifying a NULL principal name. | 6.5 |
Moyen |
||
lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) before 1.14 relies on an inappropriate context handle, which allows remote attackers to cause a denial of service (incorrect pointer read and process crash) via a crafted SPNEGO packet that is mishandled during a gss_inquire_context call. | 5 |
|||
lib/gssapi/krb5/iakerb.c in MIT Kerberos 5 (aka krb5) before 1.14 relies on an inappropriate context handle, which allows remote attackers to cause a denial of service (incorrect pointer read and process crash) via a crafted IAKERB packet that is mishandled during a gss_inquire_context call. | 7.1 |
|||
The build_principal_va function in lib/krb5/krb/bld_princ.c in MIT Kerberos 5 (aka krb5) before 1.14 allows remote authenticated users to cause a denial of service (out-of-bounds read and KDC crash) via an initial '\0' character in a long realm field within a TGS request. | 4 |
|||
MIT Kerberos 5 (aka krb5) through 1.13.1 incorrectly expects that a krb5_read_message data field is represented as a string ending with a '\0' character, which allows remote attackers to (1) cause a denial of service (NULL pointer dereference) via a zero-byte version string or (2) cause a denial of service (out-of-bounds read) by omitting the '\0' character, related to appl/user_user/server.c and lib/krb5/krb/recvauth.c. | 5 |
|||
The krb5_ldap_get_password_policy_from_dn function in plugins/kdb/ldap/libkdb_ldap/ldap_pwd_policy.c in MIT Kerberos 5 (aka krb5) before 1.13.1, when the KDC uses LDAP, allows remote authenticated users to cause a denial of service (daemon crash) via a successful LDAP query with no results, as demonstrated by using an incorrect object type for a password policy. | 3.5 |
|||
Double free vulnerability in the init_ctx_reselect function in the SPNEGO initiator in lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) 1.10.x through 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (memory corruption) or possibly execute arbitrary code via network traffic that appears to come from an intended acceptor, but specifies a security mechanism different from the one proposed by the initiator. | 7.6 |
|||
The acc_ctx_cont function in the SPNEGO acceptor in lib/gssapi/spnego/spnego_mech.c in MIT Kerberos 5 (aka krb5) 1.5.x through 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an empty continuation token at a certain point during a SPNEGO negotiation. | 7.8 |
|||
Off-by-one error in the krb5_encode_krbsecretkey function in plugins/kdb/ldap/libkdb_ldap/ldap_principal2.c in the LDAP KDB module in kadmind in MIT Kerberos 5 (aka krb5) 1.6.x through 1.11.x before 1.11.6 and 1.12.x before 1.12.2 allows remote authenticated users to cause a denial of service (buffer overflow) or possibly execute arbitrary code via a series of "cpw -keepold" commands. | 8.5 |
|||
MIT Kerberos 5 (aka krb5) before 1.12.2 allows remote attackers to cause a denial of service (buffer over-read and application crash) by injecting invalid tokens into a GSSAPI application session. | 5 |
|||
MIT Kerberos 5 (aka krb5) 1.7.x through 1.12.x before 1.12.2 allows remote attackers to cause a denial of service (buffer over-read or NULL pointer dereference, and application crash) by injecting invalid tokens into a GSSAPI application session. | 5 |
|||
An unspecified third-party database module for the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.10.x allows remote authenticated users to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted request, a different vulnerability than CVE-2013-1418. | 4 |
|||
The setup_server_realm function in main.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.7, when multiple realms are configured, allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted request. | 4.3 |
|||
schpw.c in the kpasswd service in kadmind in MIT Kerberos 5 (aka krb5) before 1.11.3 does not properly validate UDP packets before sending responses, which allows remote attackers to cause a denial of service (CPU and bandwidth consumption) via a forged packet that triggers a communication loop, as demonstrated by krb_pingpong.nasl, a related issue to CVE-1999-0103. | 5 |
|||
The prep_reprocess_req function in do_tgs_req.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.5 does not properly perform service-principal realm referral, which allows remote authenticated users to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted TGS-REQ request. | 4 |
|||
The pkinit_server_return_padata function in plugins/preauth/pkinit/pkinit_srv.c in the PKINIT implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.4 attempts to find an agility KDF identifier in inappropriate circumstances, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a crafted Draft 9 request. | 5 |
|||
The pkinit_check_kdc_pkid function in plugins/preauth/pkinit/pkinit_crypto_openssl.c in the PKINIT implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.10.4 and 1.11.x before 1.11.1 does not properly handle errors during extraction of fields from an X.509 certificate, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a malformed KRB5_PADATA_PK_AS_REQ AS-REQ request. | 5 |
|||
The process_as_req function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.10.x before 1.10.3 does not initialize a certain structure member, which allows remote attackers to cause a denial of service (uninitialized pointer dereference and daemon crash) or possibly execute arbitrary code via a malformed AS-REQ request. | 9 |
|||
The kdc_handle_protected_negotiation function in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.8.x, 1.9.x before 1.9.5, and 1.10.x before 1.10.3 attempts to calculate a checksum before verifying that the key type is appropriate for a checksum, which allows remote attackers to execute arbitrary code or cause a denial of service (uninitialized pointer free, heap memory corruption, and daemon crash) via a crafted AS-REQ request. | 9.3 |
|||
server/server_stubs.c in the kadmin protocol implementation in MIT Kerberos 5 (aka krb5) 1.10 before 1.10.1 does not properly restrict access to (1) SET_STRING and (2) GET_STRINGS operations, which might allow remote authenticated administrators to modify or read string attributes by leveraging the global list privilege. | 5.5 |
|||
The check_1_6_dummy function in lib/kadm5/srv/svr_principal.c in kadmind in MIT Kerberos 5 (aka krb5) 1.8.x, 1.9.x, and 1.10.x before 1.10.2 allows remote authenticated administrators to cause a denial of service (NULL pointer dereference and daemon crash) via a KRB5_KDB_DISALLOW_ALL_TIX create request that lacks a password. | 4 |