CVE ID | Publié | Description | Score | Gravité |
---|---|---|---|---|
Dell BSAFE SSL-J, versions prior to 6.5, and versions 7.0 and 7.1 contain a debug message revealing unnecessary information vulnerability. This may lead to disclosing sensitive information to a locally privileged user. | 4.4 |
Moyen |
||
Dell BSAFE SSL-J version 7.0 and all versions prior to 6.5, and Dell BSAFE Crypto-J versions prior to 6.2.6.1 contain an unmaintained third-party component vulnerability. An unauthenticated remote attacker could potentially exploit this vulnerability, leading to the compromise of the impacted system. This is a Critical vulnerability and Dell recommends customers to upgrade at the earliest opportunity. | 9.8 |
Critique |
||
Dell BSAFE SSL-J, versions before 6.5 and version 7.0 contain a debug message revealing unnecessary information vulnerability. This may lead to disclosing sensitive information to a locally privileged user. . | 4.4 |
Moyen |
||
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to an Information Exposure Through Timing Discrepancy vulnerabilities during DSA key generation. A malicious remote attacker could potentially exploit those vulnerabilities to recover DSA keys. | 6.5 |
Moyen |
||
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to Information Exposure Through Timing Discrepancy vulnerabilities during ECDSA key generation. A malicious remote attacker could potentially exploit those vulnerabilities to recover ECDSA keys. | 6.5 |
Moyen |
||
RSA BSAFE Crypto-J versions prior to 6.2.5 are vulnerable to a Missing Required Cryptographic Step vulnerability. A malicious remote attacker could potentially exploit this vulnerability to coerce two parties into computing the same predictable shared key. | 6.5 |
Moyen |
||
RSA BSAFE SSL-J versions prior to 6.2.4 contain a Heap Inspection vulnerability that could allow an attacker with physical access to the system to recover sensitive key material. | 4.6 |
Moyen |
||
RSA BSAFE SSL-J versions prior to 6.2.4 contain a Covert Timing Channel vulnerability during RSA decryption, also known as a Bleichenbacher attack on RSA decryption. A remote attacker may be able to recover a RSA key. | 5.9 |
Moyen |
||
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x and 4.1.x before 4.1.5, RSA BSAFE Crypto-C Micro Edition (CCME) 4.0.x and 4.1.x before 4.1.3, RSA BSAFE Crypto-J before 6.2.1, RSA BSAFE SSL-J before 6.2.1, and RSA BSAFE SSL-C before 2.8.9 allow remote attackers to discover a private-key prime by conducting a Lenstra side-channel attack that leverages an application's failure to detect an RSA signature failure during a TLS session. | 5.9 |
Moyen |
||
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3, RSA BSAFE Crypto-J before 6.2, RSA BSAFE SSL-J before 6.2, and RSA BSAFE SSL-C 2.8.9 and earlier do not enforce certain constraints on certificate data, which allows remote attackers to defeat a fingerprint-based certificate-blacklist protection mechanism by including crafted data within a certificate's unsigned portion, a similar issue to CVE-2014-8275. | 7.5 |
Haute |
||
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.6 and RSA BSAFE SSL-J before 6.1.4 do not ensure that a server's X.509 certificate is the same during renegotiation as it was before renegotiation, which allows man-in-the-middle attackers to obtain sensitive information or modify TLS session data via a "triple handshake attack." | 4.3 |
|||
The SSLSocket implementation in the (1) JSAFE and (2) JSSE APIs in EMC RSA BSAFE SSL-J 5.x before 5.1.3 and 6.x before 6.0.2 allows remote attackers to cause a denial of service (memory consumption) by triggering application-data processing during the TLS handshake, a time at which the data is internally buffered. | 5 |
|||
The (1) JSAFE and (2) JSSE APIs in EMC RSA BSAFE SSL-J 5.x before 5.1.3 and 6.x before 6.0.2 make it easier for remote attackers to bypass intended cryptographic protection mechanisms by triggering application-data processing during the TLS handshake, a time at which the data is both unencrypted and unauthenticated. | 5 |
|||
The SSLEngine API implementation in EMC RSA BSAFE SSL-J 5.x before 5.1.3 and 6.x before 6.0.2 allows remote attackers to trigger the selection of a weak cipher suite by using the wrap method during a certain incomplete-handshake state. | 5 |