CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Windows graphics on Microsoft Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, Windows 10 Gold, 1511, 1607, and 1703, Windows Server 2016, Microsoft Office Word Viewer, Microsoft Office 2007 Service Pack 3 , and Microsoft Office 2010 Service Pack 2 allows an attacker to execute remote code by the way it handles embedded fonts, aka "Win32k Graphics Remote Code Execution Vulnerability". This CVE ID is unique from CVE-2017-8683.
Improper Input Validation The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
8.8
HIGH
CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
9.3
AV:N/AC:M/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
54.46%
–
–
–
–
2021-09-05
–
54.46%
–
–
–
2022-01-09
–
54.46%
–
–
–
2022-02-06
–
–
69.12%
–
–
2023-03-12
–
–
–
11.69%
–
2023-05-07
–
–
–
20.58%
–
2023-07-23
–
–
–
33.32%
–
2023-08-27
–
–
–
45.38%
–
2023-10-01
–
–
–
46.18%
–
2023-11-12
–
–
–
61.23%
–
2023-12-17
–
–
–
61.23%
–
2024-03-10
–
–
–
59.24%
–
2024-06-02
–
–
–
59.24%
–
2024-11-10
–
–
–
52.93%
–
2024-12-22
–
–
–
23.96%
–
2025-01-19
–
–
–
23.96%
–
2025-03-18
–
–
–
–
66.9%
2025-03-30
–
–
–
–
66.01%
2025-03-30
–
–
–
–
66.01,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2017-09-17 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1273
We have encountered a number of Windows kernel crashes in the win32k.sys driver while processing corrupted TTF font files. The most frequent one occurring for the bug reported here is as follows:
---
PAGE_FAULT_IN_NONPAGED_AREA (50)
Invalid system memory was referenced. This cannot be protected by try-except,
it must be protected by a Probe. Typically the address is just plain bad or it
is pointing at freed memory.
Arguments:
Arg1: 8273777f, memory referenced.
Arg2: 00000000, value 0 = read operation, 1 = write operation.
Arg3: 919c279f, If non-zero, the instruction address which referenced the bad memory
address.
Arg4: 00000000, (reserved)
Debugging Details:
------------------
FAULTING_IP:
win32k!bGeneratePath+60
919c279f 8b0f mov ecx,dword ptr [edi]
MM_INTERNAL_CODE: 0
DEFAULT_BUCKET_ID: WIN7_DRIVER_FAULT
BUGCHECK_STR: 0x50
PROCESS_NAME: csrss.exe
CURRENT_IRQL: 0
ANALYSIS_VERSION: 6.3.9600.17237 (debuggers(dbg).140716-0327) x86fre
LAST_CONTROL_TRANSFER: from 91a9b6af to 919c279f
STACK_TEXT:
99ee4a14 91a9b6af 00000000 000003e0 00000010 win32k!bGeneratePath+0x60
99ee4a40 91a9a105 fbc62cf0 00000005 faebeda0 win32k!ttfdQueryTrueTypeOutline+0x79
99ee4a90 91a82fef 00000000 fbc62cf0 00000005 win32k!ttfdSemQueryTrueTypeOutline+0x45
99ee4ad8 91a65175 00000000 fbc62cf0 00000005 win32k!PDEVOBJ::QueryTrueTypeOutline+0x3e
99ee4b90 91a5cd60 fbc62cf0 fbc62cf0 00000003 win32k!GreGetGlyphOutlineInternal+0x4f5
99ee4c0c 8286c87a 2801007e 0000003b 00000003 win32k!NtGdiGetGlyphOutline+0x95
99ee4c0c 770570b4 2801007e 0000003b 00000003 nt!KiFastCallEntry+0x12a
WARNING: Frame IP not in any known module. Following frames may be wrong.
002df760 00000000 00000000 00000000 00000000 0x770570b4
---
We have observed the invalid memory addresses accessed by the win32k!bGeneratePath function to be seemingly "wild", e.g. 0x8273777f, 0xe9849de5, 0xc7617bc7, 0xf2edc7eb etc. The above crash dump comes from an old version of Windows 7 32-bit, because symbols for win32k.sys on the latest build are currently unavailable on the Microsoft Symbol Server. Nevertheless, a crash summary from an up-to-date system is as follows:
--- cut ---
PAGE_FAULT_IN_NONPAGED_AREA (50)
Invalid system memory was referenced. This cannot be protected by try-except,
it must be protected by a Probe. Typically the address is just plain bad or it
is pointing at freed memory.
Arguments:
Arg1: 8128f57d, memory referenced.
Arg2: 00000000, value 0 = read operation, 1 = write operation.
Arg3: 925375f6, If non-zero, the instruction address which referenced the bad memory
address.
Arg4: 00000000, (reserved)
Debugging Details:
------------------
FAULTING_IP:
win32k!PATHOBJ_bCloseFigure+76
925375f6 8b0f mov ecx,dword ptr [edi]
MM_INTERNAL_CODE: 0
DEFAULT_BUCKET_ID: WIN7_DRIVER_FAULT
BUGCHECK_STR: 0x50
PROCESS_NAME: csrss.exe
CURRENT_IRQL: 0
ANALYSIS_VERSION: 6.3.9600.17237 (debuggers(dbg).140716-0327) x86fre
LAST_CONTROL_TRANSFER: from 9261b9c8 to 925375f6
STACK_TEXT:
WARNING: Stack unwind information not available. Following frames may be wrong.
89277a10 9261b9c8 00000000 00000150 00000010 win32k!PATHOBJ_bCloseFigure+0x76
89277a3c 9261a316 fbb26cf0 0000000c fba36f38 win32k!XLATEOBJ_hGetColorTransform+0x423bf
89277a8c 926019b4 00000000 fbb26cf0 0000000c win32k!XLATEOBJ_hGetColorTransform+0x40d0d
89277ad4 925e33e5 00000000 fbb26cf0 0000000c win32k!XLATEOBJ_hGetColorTransform+0x283ab
89277b90 925dafcc fbb26cf0 fbb26cf0 00000003 win32k!XLATEOBJ_hGetColorTransform+0x9ddc
89277c0c 82837986 2201061c 00000029 00000003 win32k!XLATEOBJ_hGetColorTransform+0x19c3
89277c0c 772b6c74 2201061c 00000029 00000003 nt!KiSystemServicePostCall
0019f608 00000000 00000000 00000000 00000000 0x772b6c74
--- cut ---
While the above crashes are the most common ones, we have also encountered bugchecks (likely caused by the same issue) at the following other locations on old Windows 7 32-bit:
---
win32k!vQsplineToPolyBezier+43
91522614 8b4608 mov eax,dword ptr [esi+8]
---
win32k!vQsplineToPolyBezier+83
92292654 8941fc mov dword ptr [ecx-4],eax
---
... and on latest Windows 7 32-bit:
---
win32k!EngDeleteRgn+3293
91e0747c 8b460c mov eax,dword ptr [esi+0Ch]
---
The crash in win32k!vQsplineToPolyBezier+83 strongly suggests that the failures are caused or may lead to memory corruption, and consequently to arbitrary code execution.
While we have not determined the specific root cause of the vulnerability, we have pinpointed the offending mutations to reside in the "fpgm" table. In case of the few samples we have examined, the problem seems to stem from changing one of the instructions in the FPGM program to "FLIPPT".
The issue reproduces on Windows 7 (other platforms unchecked). It is easiest to reproduce with Special Pools enabled for win32k.sys (leading to an immediate crash when the bug is triggered), but it it also possible to observe a system crash on a default Windows installation. In order to reproduce the problem with the provided samples, it is necessary to use a custom program which calls the GetGlyphOutline() API with various parameters over all of the font's glyphs.
Attached is an archive with several proof-of-concept mutated TTF files.
Proof of Concept:
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/42744.zip