CVE-2021-46936 : Détail

CVE-2021-46936

7.8
/
HIGH
Memory Corruption
0.04%V3
Local
2024-02-27 09:44 +00:00
2024-05-29 04:59 +00:00

Alerte pour un CVE

Restez informé de toutes modifications pour un CVE spécifique.
Gestion des alertes

Descriptions

net: fix use-after-free in tw_timer_handler

In the Linux kernel, the following vulnerability has been resolved: net: fix use-after-free in tw_timer_handler A real world panic issue was found as follow in Linux 5.4. BUG: unable to handle page fault for address: ffffde49a863de28 PGD 7e6fe62067 P4D 7e6fe62067 PUD 7e6fe63067 PMD f51e064067 PTE 0 RIP: 0010:tw_timer_handler+0x20/0x40 Call Trace: call_timer_fn+0x2b/0x120 run_timer_softirq+0x1ef/0x450 __do_softirq+0x10d/0x2b8 irq_exit+0xc7/0xd0 smp_apic_timer_interrupt+0x68/0x120 apic_timer_interrupt+0xf/0x20 This issue was also reported since 2017 in the thread [1], unfortunately, the issue was still can be reproduced after fixing DCCP. The ipv4_mib_exit_net is called before tcp_sk_exit_batch when a net namespace is destroyed since tcp_sk_ops is registered befrore ipv4_mib_ops, which means tcp_sk_ops is in the front of ipv4_mib_ops in the list of pernet_list. There will be a use-after-free on net->mib.net_statistics in tw_timer_handler after ipv4_mib_exit_net if there are some inflight time-wait timers. This bug is not introduced by commit f2bf415cfed7 ("mib: add net to NET_ADD_STATS_BH") since the net_statistics is a global variable instead of dynamic allocation and freeing. Actually, commit 61a7e26028b9 ("mib: put net statistics on struct net") introduces the bug since it put net statistics on struct net and free it when net namespace is destroyed. Moving init_ipv4_mibs() to the front of tcp_init() to fix this bug and replace pr_crit() with panic() since continuing is meaningless when init_ipv4_mibs() fails. [1] https://groups.google.com/g/syzkaller/c/p1tn-_Kc6l4/m/smuL_FMAAgAJ?pli=1

Informations

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-416 Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.

Metrics

Metric Score Sévérité CVSS Vecteur Source
V3.1 7.8 HIGH CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

EPSS Score

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

EPSS Percentile

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 2.6.27 To (excluding) 4.4.298

Linux>>Linux_kernel >> Version From (including) 4.5.0 To (excluding) 4.9.296

Linux>>Linux_kernel >> Version From (including) 4.10.0 To (excluding) 4.14.261

Linux>>Linux_kernel >> Version From (including) 4.15.0 To (excluding) 4.19.224

Linux>>Linux_kernel >> Version From (including) 4.20.0 To (excluding) 5.4.170

Linux>>Linux_kernel >> Version From (including) 5.5.0 To (excluding) 5.10.90

Linux>>Linux_kernel >> Version From (including) 5.11.0 To (excluding) 5.15.13

References

Cliquez sur le bouton à gauche (OFF), pour autoriser l'inscription de cookie améliorant les fonctionnalités du site. Cliquez sur le bouton à gauche (Tout accepter), pour ne plus autoriser l'inscription de cookie améliorant les fonctionnalités du site.