CVE-2021-47094 : Détail

CVE-2021-47094

7.1
/
Haute
0.01%V4
Local
2024-03-04
18h10 +00:00
2024-12-19
07h35 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

KVM: x86/mmu: Don't advance iterator after restart due to yielding

In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Don't advance iterator after restart due to yielding After dropping mmu_lock in the TDP MMU, restart the iterator during tdp_iter_next() and do not advance the iterator. Advancing the iterator results in skipping the top-level SPTE and all its children, which is fatal if any of the skipped SPTEs were not visited before yielding. When zapping all SPTEs, i.e. when min_level == root_level, restarting the iter and then invoking tdp_iter_next() is always fatal if the current gfn has as a valid SPTE, as advancing the iterator results in try_step_side() skipping the current gfn, which wasn't visited before yielding. Sprinkle WARNs on iter->yielded being true in various helpers that are often used in conjunction with yielding, and tag the helper with __must_check to reduce the probabily of improper usage. Failing to zap a top-level SPTE manifests in one of two ways. If a valid SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(), the shadow page will be leaked and KVM will WARN accordingly. WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm] RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm] Call Trace: kvm_arch_destroy_vm+0x130/0x1b0 [kvm] kvm_destroy_vm+0x162/0x2a0 [kvm] kvm_vcpu_release+0x34/0x60 [kvm] __fput+0x82/0x240 task_work_run+0x5c/0x90 do_exit+0x364/0xa10 ? futex_unqueue+0x38/0x60 do_group_exit+0x33/0xa0 get_signal+0x155/0x850 arch_do_signal_or_restart+0xed/0x750 exit_to_user_mode_prepare+0xc5/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x48/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of marking a struct page as dirty/accessed after it has been put back on the free list. This directly triggers a WARN due to encountering a page with page_count() == 0, but it can also lead to data corruption and additional errors in the kernel. WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171 RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm] Call Trace: kvm_set_pfn_dirty+0x120/0x1d0 [kvm] __handle_changed_spte+0x92e/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] zap_gfn_range+0x549/0x620 [kvm] kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm] mmu_free_root_page+0x219/0x2c0 [kvm] kvm_mmu_free_roots+0x1b4/0x4e0 [kvm] kvm_mmu_unload+0x1c/0xa0 [kvm] kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm] kvm_put_kvm+0x3b1/0x8b0 [kvm] kvm_vcpu_release+0x4e/0x70 [kvm] __fput+0x1f7/0x8c0 task_work_run+0xf8/0x1a0 do_exit+0x97b/0x2230 do_group_exit+0xda/0x2a0 get_signal+0x3be/0x1e50 arch_do_signal_or_restart+0x244/0x17f0 exit_to_user_mode_prepare+0xcb/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x4d/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Note, the underlying bug existed even before commit 1af4a96025b3 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still incorrectly advance past a top-level entry when yielding on a lower-level entry. But with respect to leaking shadow pages, the bug was introduced by yielding before processing the current gfn. Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or callers could jump to their "retry" label. The downside of that approach is that tdp_mmu_iter_cond_resched() _must_ be called before anything else in the loop, and there's no easy way to enfornce that requirement. Ideally, KVM would handling the cond_resched() fully within the iterator macro (the code is actually quite clean) and avoid this entire class of bugs, but that is extremely difficult do wh ---truncated---

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE Other No informations.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 7.1 HIGH CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

134c704f-9b21-4f2e-91b3-4a467353bcc0

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 5.10 To (excluding) 5.15.12

Linux>>Linux_kernel >> Version 5.16

Linux>>Linux_kernel >> Version 5.16

Linux>>Linux_kernel >> Version 5.16

Linux>>Linux_kernel >> Version 5.16

Linux>>Linux_kernel >> Version 5.16

Linux>>Linux_kernel >> Version 5.16

Références