CVE-2024-9287 : Détail

CVE-2024-9287

5.3
/
Moyen
Command Injection
A03-Injection
0.04%V3
Local
2024-10-22
16h34 +00:00
2025-01-31
19h55 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Virtual environment (venv) activation scripts don't quote paths

A vulnerability has been found in the CPython `venv` module and CLI where path names provided when creating a virtual environment were not quoted properly, allowing the creator to inject commands into virtual environment "activation" scripts (ie "source venv/bin/activate"). This means that attacker-controlled virtual environments are able to run commands when the virtual environment is activated. Virtual environments which are not created by an attacker or which aren't activated before being used (ie "./venv/bin/python") are not affected.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-428 Unquoted Search Path or Element
The product uses a search path that contains an unquoted element, in which the element contains whitespace or other separators. This can cause the product to access resources in a parent path.
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
The product constructs all or part of a command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended command when it is sent to a downstream component.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V4.0 5.3 MEDIUM CVSS:4.0/AV:L/AC:L/AT:P/PR:H/UI:A/VC:H/VI:H/VA:N/SC:N/SI:N/SA:N/U:Green

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the “thing that is vulnerable”, which we refer to formally as the vulnerable system.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable system is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Either: the attacker exploits the vulnerability by accessing the target system locally (e.g., keyboard, console), or through terminal emulation (e.g., SSH); or the attacker relies on User Interaction by another person to perform actions required to exploit the vulnerability (e.g., using social engineering techniques to trick a legitimate user into opening a malicious document).

Attack Complexity

This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit.

Low

The attacker must take no measurable action to exploit the vulnerability. The attack requires no target-specific circumvention to exploit the vulnerability. An attacker can expect repeatable success against the vulnerable system.

Attack Requirements

This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack.

Present

The successful attack depends on the presence of specific deployment and execution conditions of the vulnerable system that enable the attack. These include: A race condition must be won to successfully exploit the vulnerability. The successfulness of the attack is conditioned on execution conditions that are not under full control of the attacker. The attack may need to be launched multiple times against a single target before being successful. Network injection. The attacker must inject themselves into the logical network path between the target and the resource requested by the victim (e.g. vulnerabilities requiring an on-path attacker).

Privileges Required

This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability.

High

The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable system allowing full access to the vulnerable system’s settings and files.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system.

Active

Successful exploitation of this vulnerability requires a targeted user to perform specific, conscious interactions with the vulnerable system and the attacker’s payload, or the user’s interactions would actively subvert protection mechanisms which would lead to exploitation of the vulnerability. Examples include: importing a file into a vulnerable system in a specific manner placing files into a specific directory prior to executing code submitting a specific string into a web application (e.g. reflected or self XSS) dismiss or accept prompts or security warnings prior to taking an action (e.g. opening/editing a file, connecting a device).

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information managed by the system due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all information within the Vulnerable System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the Vulnerable System. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the Vulnerable System.

Availability Impact

This metric measures the impact to the availability of the impacted system resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the Vulnerable System.

Sub Confidentiality Impact

Negligible

There is no loss of confidentiality within the Subsequent System or all confidentiality impact is constrained to the Vulnerable System.

Sub Integrity Impact

None

There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.

Sub Availability Impact

None

There is no impact to availability within the Subsequent System or all availability impact is constrained to the Vulnerable System.

Threat Metrics

The Threat metrics measure the current state of exploit techniques or code availability for a vulnerability.

Environmental Metrics

These metrics enable the consumer analyst to customize the resulting score depending on the importance of the affected IT asset to a user’s organization, measured in terms of complementary/alternative security controls in place, Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base metrics and are assigned values based on the system placement within organizational infrastructure.

Supplemental Metrics

Supplemental metric group provides new metrics that describe and measure additional extrinsic attributes of a vulnerability. While the assessment of Supplemental metrics is provisioned by the provider, the usage and response plan of each metric within the Supplemental metric group is determined by the consumer.

Provider Urgency

Many vendors currently provide supplemental severity ratings to consumers via product security advisories.

Green

Provider has assessed the impact of this vulnerability as having a reduced urgency.

V3.1 7.8 HIGH CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Products Mentioned

Configuraton 0

Python>>Python >> Version To (excluding) 3.9.21

Python>>Python >> Version From (including) 3.10.0 To (excluding) 3.10.16

Python>>Python >> Version From (including) 3.11.0 To (excluding) 3.11.11

Python>>Python >> Version From (including) 3.12.0 To (excluding) 3.12.8

Python>>Python >> Version From (including) 3.13.0 To (excluding) 3.13.1

Python>>Python >> Version 3.14.0

    Références