CVE-2015-7645 : Détail

CVE-2015-7645

7.8
/
Haute
94.88%V3
Local
2015-10-15
10h00 +00:00
2025-02-04
21h45 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Adobe Flash Player 18.x through 18.0.0.252 and 19.x through 19.0.0.207 on Windows and OS X and 11.x through 11.2.202.535 on Linux allows remote attackers to execute arbitrary code via a crafted SWF file, as exploited in the wild in October 2015.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE Other No informations.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 7.8 HIGH CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]
V2 9.3 AV:N/AC:M/Au:N/C:C/I:C/A:C [email protected]

CISA KEV (Vulnérabilités Exploitées Connues)

Nom de la vulnérabilité : Adobe Flash Player Arbitrary Code Execution Vulnerability

Action requise : The impacted product is end-of-life and should be disconnected if still in use.

Connu pour être utilisé dans des campagnes de ransomware : Unknown

Ajouter le : 2022-03-02 23h00 +00:00

Action attendue : 2022-03-23 23h00 +00:00

Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 38490

Date de publication : 2015-10-18 22h00 +00:00
Auteur : Google Security Research
EDB Vérifié : Yes

Source: https://code.google.com/p/google-security-research/issues/detail?id=547 If IExternalizable.writeExternal is overridden with a value that is not a function, Flash assumes it is a function even though it is not one. This leads to execution of a 'method' outside of the ActionScript object's ActionScript vtable, leading to memory corruption. A sample swf is attached. ActionScript code is also attached, but it does not compile to the needed to swf. To get the PoC, decompress the swf using flasm -x myswf, and then search for "triteExternal" and change it to "writeExternal". This bug is in the AVM serializer (http://hg.mozilla.org/tamarin-redux/file/5571cf86fc68/core/AvmSerializer.cpp), and is type confusion when calling the method writeExternal, which is implemented when a class extends IExternalizable (http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/IExternalizable.html). The method is resolved on line 1437 of AvmSerializer.cpp by calling toplevel->getBinding, which does not guarantee that the binding is a method binding. It then gets cast to a method on line 773 and called, which is type confusion. One challenge with the bug is actually creating a SWF which can hit this code, as usually overriding a defined method will lead to an illegal override exception. The 0-day author did this differently than I did. The code where all class properties (methods, internal classes, variables, etc.) are resolved is in http://hg.mozilla.org/tamarin-redux/file/5571cf86fc68/core/Traits.cpp. You can see on line 813 that a check that no two properties of a class have the same name is commented out due to some legitimate SWFs doing that. This means that a SWF can have a variable with the same name as a method (overriding a method with less restrictive method is still illegal), which is how my PoC overrode the method. The 0-day did something slightly different, it put the redefinition of writeExternal in a different public namespace than the original definition of writeExternal. This has the benefit that the ActionScript will compile and hit the bug without modification. Proof of Concept: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/38490.zip

Products Mentioned

Configuraton 0

Adobe>>Flash_player >> Version From (including) 18.0.0.160 To (including) 18.0.0.252

Adobe>>Flash_player >> Version 19.0.0.185

Adobe>>Flash_player >> Version 19.0.0.207

Apple>>Mac_os_x >> Version -

Microsoft>>Windows >> Version -

Configuraton 0

Adobe>>Flash_player >> Version To (including) 11.2.202.535

Linux>>Linux_kernel >> Version -

Configuraton 0

Opensuse>>Evergreen >> Version 11.4

Opensuse>>Opensuse >> Version 13.1

Opensuse>>Opensuse >> Version 13.2

Suse>>Linux_enterprise_desktop >> Version 11

Suse>>Linux_enterprise_desktop >> Version 11

Suse>>Linux_enterprise_desktop >> Version 12

Suse>>Linux_enterprise_workstation_extension >> Version 12

Configuraton 0

Redhat>>Enterprise_linux_desktop >> Version 5.0

Redhat>>Enterprise_linux_desktop >> Version 6.0

Redhat>>Enterprise_linux_eus >> Version 6.7

Redhat>>Enterprise_linux_server >> Version 5.0

Redhat>>Enterprise_linux_server >> Version 6.0

Redhat>>Enterprise_linux_server_from_rhui >> Version 5.0

Redhat>>Enterprise_linux_server_from_rhui >> Version 6.0

Redhat>>Enterprise_linux_workstation >> Version 5.0

Redhat>>Enterprise_linux_workstation >> Version 6.0

Références

http://rhn.redhat.com/errata/RHSA-2015-1913.html
Tags : vendor-advisory, x_refsource_REDHAT
https://www.exploit-db.com/exploits/38490/
Tags : exploit, x_refsource_EXPLOIT-DB
http://rhn.redhat.com/errata/RHSA-2015-2024.html
Tags : vendor-advisory, x_refsource_REDHAT
http://www.securitytracker.com/id/1033850
Tags : vdb-entry, x_refsource_SECTRACK
http://www.securityfocus.com/bid/77081
Tags : vdb-entry, x_refsource_BID
https://security.gentoo.org/glsa/201511-02
Tags : vendor-advisory, x_refsource_GENTOO