Détail du CWE-150

CWE-150

Improper Neutralization of Escape, Meta, or Control Sequences
Incomplete
2006-07-19
00h00 +00:00
2023-06-29
00h00 +00:00
Notifications pour un CWE
Restez informé de toutes modifications pour un CWE spécifique.
Gestion des notifications

Nom: Improper Neutralization of Escape, Meta, or Control Sequences

The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could be interpreted as escape, meta, or control character sequences when they are sent to a downstream component.

Description du CWE

As data is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected actions.

Informations générales

Modes d'introduction

Implementation : REALIZATION: This weakness is caused during implementation of an architectural security tactic.

Plateformes applicables

Langue

Class: Not Language-Specific (Undetermined)

Conséquences courantes

Portée Impact Probabilité
IntegrityUnexpected State

Exemples observés

Références Description

CVE-2002-0542

The mail program processes special "~" escape sequence even when not in interactive mode.

CVE-2000-0703

Setuid program does not filter escape sequences before calling mail program.

CVE-2002-0986

Mail function does not filter control characters from arguments, allowing mail message content to be modified.

CVE-2003-0020

Multi-channel issue. Terminal escape sequences not filtered from log files.

CVE-2003-0083

Multi-channel issue. Terminal escape sequences not filtered from log files.

CVE-2003-0021

Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0022

Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0023

Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0063

Terminal escape sequences not filtered by terminals when displaying files.

CVE-2000-0476

Terminal escape sequences not filtered by terminals when displaying files.

CVE-2001-1556

MFV. (multi-channel). Injection of control characters into log files that allow information hiding when using raw Unix programs to read the files.

Mesures d’atténuation potentielles

Developers should anticipate that escape, meta and control characters/sequences will be injected/removed/manipulated in the input vectors of their product. Use an appropriate combination of denylists and allowlists to ensure only valid, expected and appropriate input is processed by the system.
Phases : Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.


Phases : Implementation
While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).
Phases : Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.

Notes de cartographie des vulnérabilités

Justification : This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Commentaire : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Modèles d'attaque associés

CAPEC-ID Nom du modèle d'attaque
CAPEC-134 Email Injection
An adversary manipulates the headers and content of an email message by injecting data via the use of delimiter characters native to the protocol.
CAPEC-41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
This type of attack involves an attacker leveraging meta-characters in email headers to inject improper behavior into email programs. Email software has become increasingly sophisticated and feature-rich. In addition, email applications are ubiquitous and connected directly to the Web making them ideal targets to launch and propagate attacks. As the user demand for new functionality in email applications grows, they become more like browsers with complex rendering and plug in routines. As more email functionality is included and abstracted from the user, this creates opportunities for attackers. Virtually all email applications do not list email header information by default, however the email header contains valuable attacker vectors for the attacker to exploit particularly if the behavior of the email client application is known. Meta-characters are hidden from the user, but can contain scripts, enumerations, probes, and other attacks against the user's system.
CAPEC-81 Web Server Logs Tampering
Web Logs Tampering attacks involve an attacker injecting, deleting or otherwise tampering with the contents of web logs typically for the purposes of masking other malicious behavior. Additionally, writing malicious data to log files may target jobs, filters, reports, and other agents that process the logs in an asynchronous attack pattern. This pattern of attack is similar to "Log Injection-Tampering-Forging" except that in this case, the attack is targeting the logs of the web server and not the application.
CAPEC-93 Log Injection-Tampering-Forging
This attack targets the log files of the target host. The attacker injects, manipulates or forges malicious log entries in the log file, allowing them to mislead a log audit, cover traces of attack, or perform other malicious actions. The target host is not properly controlling log access. As a result tainted data is resulting in the log files leading to a failure in accountability, non-repudiation and incident forensics capability.

Soumission

Nom Organisation Date Date de publication Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Nom Organisation Date Commentaire
Eric Dalci Cigital 2008-07-01 +00:00 updated Potential_Mitigations, Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2008-10-14 +00:00 updated Description
CWE Content Team MITRE 2009-07-27 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2010-04-05 +00:00 updated Description, Name
CWE Content Team MITRE 2011-03-29 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences, Observed_Examples, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2011-06-27 +00:00 updated Common_Consequences
CWE Content Team MITRE 2012-05-11 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2012-10-30 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships
CWE Content Team MITRE 2017-05-03 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Modes_of_Introduction, Relationships
CWE Content Team MITRE 2019-01-03 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2019-06-20 +00:00 updated Related_Attack_Patterns
CWE Content Team MITRE 2020-02-24 +00:00 updated Potential_Mitigations, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2020-06-25 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2023-01-31 +00:00 updated Description, Potential_Mitigations
CWE Content Team MITRE 2023-04-27 +00:00 updated Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes